Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE:NOD mice model human type 1 diabetes and are used to investigate tolerance induction protocols for islet transplantation in a setting of autoimmunity. However, costimulation blockade-based tolerance protocols have failed in prolonging islet allograft survival in NOD mice. RESEARCH DESIGN AND METHODS:To investigate the underlying mechanisms, we studied the ability of costimulation blockade to prolong islet allograft survival in congenic NOD mice bearing insulin-dependent diabetes (Idd) loci that reduce the frequency of diabetes. RESULTS:The frequency of diabetes is reduced in NOD.B6 Idd3 mice and is virtually absent in NOD.B6/B10 Idd3 Idd5 mice. Islet allograft survival in NOD.B6 Idd3 mice treated with costimulation blockade is prolonged compared with NOD mice, and in NOD.B6/B10 Idd3 Idd5, mice islet allograft survival is similar to that achieved in C57BL/6 mice. Conversely, some Idd loci were not beneficial for the induction of transplantation tolerance. Alloreactive CD8 T-cell depletion in (NOD x CBA)F1 mice treated with costimulation blockade was impaired compared with similarly treated (C57BL/6.H2(g7) x CBA)F1 mice. Injection of exogenous interleukin (IL)-2 into NOD mice treated with costimulation prolonged islet allograft survival. NOD.B6 Idd3 mice treated with costimulation blockade deleted alloreactive CD8 T-cells and exhibited prolonged islet allograft survival. CONCLUSIONS:Il2 is the Idd3 diabetes susceptibility gene and can influence the outcome of T-cell deletion and islet allograft survival in mice treated with costimulation blockade. These data suggest that Idd loci can facilitate induction of transplantation tolerance by costimulation blockade and that IL-2/Idd3 is a critical component in this process.

Original publication

DOI

10.2337/db08-0275

Type

Journal article

Journal

Diabetes

Publication Date

01/2009

Volume

58

Pages

165 - 173

Addresses

Program in Immunology and Virology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Keywords

Islets of Langerhans, Killer Cells, Natural, Animals, Mice, Congenic, Mice, Inbred C3H, Mice, Inbred NOD, Mice, Diabetes Mellitus, Type 1, CD40 Ligand, Antibodies, Monoclonal, Islets of Langerhans Transplantation, Transplantation, Homologous, Flow Cytometry, Cytotoxicity, Immunologic, Graft Survival