Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A number of recent technological developments have greatly facilitated the genetic engineering of immunoglobulins. The use of PCR has permitted the variable regions to be rapidly cloned either from a specific hybridoma source or as a gene library from non-immunised cells. The conversion of the rodent antibody into a humanized version is now well established. To develop these antibodies for clinical use has required the development of high level expression systems. For the expression of large multimeric glycoproteins, mammalian cell systems generally provide the highest levels of secreted product and therefore are the methods of choice for producing whole recombinant antibodies. Novel antigen-binding units have been developed by joining the two variable domains of an antibody into single-chain polypeptides. Such fragments can be produced in high yield by secretion from E. coli raising the prospect of bulk preparation of these antibody fragments for the development of low-cost immunopurification and assay reagents. Finally, the ability to screen for antigen binding by displaying immunoglobulin variable regions on the surface of filamentous bacteriaphages has opened up the possibility of bypassing the immune system to generate novel antibody specificities in vitro.

Type

Journal article

Journal

J Immunol Methods

Publication Date

10/02/1994

Volume

168

Pages

149 - 165

Keywords

Amino Acid Sequence, Animals, Antibodies, Monoclonal, Bacteria, CHO Cells, Cricetinae, Gene Expression, Genes, Immunoglobulin, Humans, Molecular Sequence Data, Protein Engineering, Recombinant Fusion Proteins