Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Whereas most nontyphoidal Salmonella (NTS) are associated with gastroenteritis, there has been a dramatic increase in reports of NTS-associated invasive disease in sub-Saharan Africa. Salmonella enterica serovar Typhimurium isolates are responsible for a significant proportion of the reported invasive NTS in this region. Multilocus sequence analysis of invasive S. Typhimurium from Malawi and Kenya identified a dominant type, designated ST313, which currently is rarely reported outside of Africa. Whole-genome sequencing of a multiple drug resistant (MDR) ST313 NTS isolate, D23580, identified a distinct prophage repertoire and a composite genetic element encoding MDR genes located on a virulence-associated plasmid. Further, there was evidence of genome degradation, including pseudogene formation and chromosomal deletions, when compared with other S. Typhimurium genome sequences. Some of this genome degradation involved genes previously implicated in virulence of S. Typhimurium or genes for which the orthologs in S. Typhi are either pseudogenes or are absent. Genome analysis of other epidemic ST313 isolates from Malawi and Kenya provided evidence for microevolution and clonal replacement in the field.

Original publication

DOI

10.1101/gr.091017.109

Type

Journal article

Journal

Genome Res

Publication Date

12/2009

Volume

19

Pages

2279 - 2287

Keywords

Africa South of the Sahara, Child, Preschool, DNA, Bacterial, Disease Outbreaks, Drug Resistance, Multiple, Bacterial, Genotype, Humans, Molecular Sequence Data, Salmonella Infections, Salmonella typhimurium, Sequence Analysis, DNA