Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The v-ATPase is a fundamental eukaryotic enzyme central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well-documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation impacts holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF-TFE proteins in fly and mammals. Collectively, this evidence points to an ancient Mitf/v-ATPase/TORC1 module that serves as a dynamic modulator of metabolism for cellular homeostasis.

Original publication

DOI

10.1242/jcs.173807

Type

Journal article

Journal

Journal of Cell Science

Publisher

The Company of Biologists

Publication Date

01/01/2015