Which biologic? New findings from a real‐world study
See related article
Accounting for intensity variation in image analysis of large-scale multiplexed clinical trial datasets.
Multiplex immunofluorescence (mIF) imaging can provide comprehensive quantitative and spatial information for multiple immune markers for tumour immunoprofiling. However, application at scale to clinical trial samples sourced from multiple institutions is challenging due to pre-analytical heterogeneity. This study reports an analytical approach to the largest multi-parameter immunoprofiling study of clinical trial samples to date. We analysed 12,592 tissue microarray (TMA) spots from 3,545 colorectal cancers sourced from more than 240 institutions in two clinical trials (QUASAR 2 and SCOT) stained for CD4, CD8, CD20, CD68, FoxP3, pan-cytokeratin, and DAPI by mIF. TMA slides were multi-spectrally imaged and analysed by cell-based and pixel-based marker analysis. We developed an adaptive thresholding method to account for inter- and intra-slide intensity variation in TMA analysis. Applying this method effectively ameliorated inter- and intra-slide intensity variation improving the image analysis results compared with methods using a single global threshold. Correlation of CD8 data derived by our mIF analysis approach with single-plex chromogenic immunohistochemistry CD8 data derived from subsequent sections indicates the validity of our method (Spearman's rank correlation coefficients ρ between 0.63 and 0.66, p ≪ 0.01) as compared with the current gold standard analysis approach. Evaluation of correlation between cell-based and pixel-based analysis results confirms equivalency (ρ > 0.8, p ≪ 0.01, except for CD20 in the epithelial region) of both analytical approaches. These data suggest that our adaptive thresholding approach can enable analysis of mIF-stained clinical trial TMA datasets by digital pathology at scale for precision immunoprofiling.
The impact of anti-malarial markets on artemisinin resistance: perspectives from Burkina Faso.
BackgroundWidespread artemisinin resistance in Africa could be catastrophic when drawing parallels with the failure of chloroquine in the 1970s and 1980s. This article explores the role of anti-malarial market characteristics in the emergence and spread of arteminisin resistance in African countries, drawing on perspectives from Burkina Faso.MethodsData were collected through in-depth interviews and focus group discussions. A representative sample of national policy makers, regulators, public and private sector wholesalers, retailers, clinicians, nurses, and community members were purposively sampled. Additional information was also sought via review of policy publications and grey literature on anti-malarial policies and deployment practices in Burkina Faso.ResultsThirty seven in-depth interviews and 6 focus group discussions were conducted. The study reveals that the current operational mode of anti-malarial drug markets in Burkina Faso promotes arteminisin resistance emergence and spread. The factors are mainly related to the artemisinin-based combination therapy (ACT) supply chain, to ACT quality, ACT prescription monitoring and to ACT access and misuse by patients.ConclusionStudy findings highlight the urgent requirement to reform current characteristics of the anti-malarial drug market in order to delay the emergence and spread of artemisinin resistance in Burkina Faso. Four recommendations for public policy emerged during data analysis: (1) Address the suboptimal prescription of anti-malarial drugs, (2) Apply laws that prohibit the sale of anti-malarials without prescription, (3) Restrict the availability of street drugs, (4) Sensitize the population on the value of compliance regarding correct acquisition and intake of anti-malarials. Funding systems for anti-malarial drugs in terms of availability and accessibility must also be stabilized.
Topic modeling identifies novel genetic loci associated with multimorbidities in UK Biobank.
Many diseases show patterns of co-occurrence, possibly driven by systemic dysregulation of underlying processes affecting multiple traits. We have developed a method (treeLFA) for identifying such multimorbidities from routine health-care data, which combines topic modeling with an informative prior derived from medical ontology. We apply treeLFA to UK Biobank data and identify a variety of topics representing multimorbidity clusters, including a healthy topic. We find that loci identified using topic weights as traits in a genome-wide association study (GWAS) analysis, which we validated with a range of approaches, only partially overlap with loci from GWASs on constituent single diseases. We also show that treeLFA improves upon existing methods like latent Dirichlet allocation in various ways. Overall, our findings indicate that topic models can characterize multimorbidity patterns and that genetic analysis of these patterns can provide insight into the etiology of complex traits that cannot be determined from the analysis of constituent traits alone.
SARS-CoV-2 infection induces a long-lived pro-inflammatory transcriptional profile
Abstract Background The immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in COVID-19 patients has been extensively investigated. However, much less is known about the long-term effects of infection in patients and how it could affect the immune system and its capacity to respond to future perturbations. Methods Using a targeted single-cell multiomics approach, we have recently identified a prolonged anti-inflammatory gene expression signature in T and NK cells in type 1 diabetes patients treated with low-dose IL-2. Here, we investigated the dynamics of this signature in three independent cohorts of COVID-19 patients: (i) the Oxford COVID-19 Multi-omics Blood Atlas (COMBAT) dataset, a cross-sectional cohort including 77 COVID-19 patients and ten healthy donors; (ii) the INCOV dataset, consisting of 525 samples taken from 209 COVID-19 patients during and after infection; and (iii) a longitudinal dataset consisting of 269 whole-blood samples taken from 139 COVID-19 patients followed for a period of up to 7 months after the onset of symptoms using a bulk transcriptomic approach. Results We discovered that SARS-CoV-2 infection leads to a prolonged alteration of the gene expression profile of circulating T, B and NK cells and monocytes. Some of the genes affected were the same as those present in the IL-2-induced anti-inflammatory gene expression signature but were regulated in the opposite direction, implying a pro-inflammatory status. The altered transcriptional profile was detected in COVID-19 patients for at least 2 months after the onset of the disease symptoms but was not observed in response to influenza infection or sepsis. Gene network analysis suggested a central role for the transcriptional factor NF-κB in the regulation of the observed transcriptional alterations. Conclusions SARS-CoV-2 infection causes a prolonged increase in the pro-inflammatory transcriptional status that could predispose post-acute patients to the development of long-term health consequences, including autoimmune disease, reactivation of other viruses and disruption of the host immune system-microbiome ecosystem.
Integrative GWAS and co-localisation analysis suggests novel genes associated with age-related multimorbidity.
Advancing age is the greatest risk factor for developing multiple age-related diseases. Therapeutic approaches targeting the underlying pathways of ageing, rather than individual diseases, may be an effective way to treat and prevent age-related morbidity while reducing the burden of polypharmacy. We harness the Open Targets Genetics Portal to perform a systematic analysis of nearly 1,400 genome-wide association studies (GWAS) mapped to 34 age-related diseases and traits, identifying genetic signals that are shared between two or more of these traits. Using locus-to-gene (L2G) mapping, we identify 995 targets with shared genetic links to age-related diseases and traits, which are enriched in mechanisms of ageing and include known ageing and longevity-related genes. Of these 995 genes, 128 are the target of an approved or investigational drug, 526 have experimental evidence of binding pockets or are predicted to be tractable, and 341 have no existing tractability evidence, representing underexplored genes which may reveal novel biological insights and therapeutic opportunities. We present these candidate targets for exploration and prioritisation in a web application.
Current rates of purchasing of antibiotics without a prescription across sub-saharan Africa; rationale and potential programmes to reduce inappropriate dispensing and resistance.
INTRODUCTION: Antimicrobial resistance (AMR) is a global concern. Currently, the greatest mortality due to AMR is in Africa. A key driver continues to be high levels of dispensing of antibiotics without a prescription. AREAS COVERED: A need to document current rates of dispensing, their rationale and potential ways forward including antimicrobial stewardship programmes (ASPs). A narrative review was undertaken. The highest rates of antibiotic purchasing were in Eritrea (up to 89.2% of antibiotics dispensed), Ethiopia (up to 87.9%), Nigeria (up to 86.5%), Tanzania (up to 92.3%) and Zambia (up to 100% of pharmacies dispensing without a prescription). However, considerable variation with no dispensing in a minority of countries and situations. Key drivers of self-purchasing included high co-payment levels for physician consultations and antibiotic costs, travel costs, convenience of pharmacies, patient requests, limited knowledge of antibiotics and AMR and weak enforcement. ASPs have been introduced in some African countries along with quality targets to reduce inappropriate dispensing, centering on educating pharmacists and patients. EXPERT OPINION: ASP activities need accelerating among community pharmacies alongside quality targets, with greater monitoring of pharmacists' activities to reduce inappropriate dispensing. Such activities, alongside educating patients and HCPs, should enhance appropriate dispensing of antibiotics and reduce AMR.
Systematic identification of disease-causing promoter and untranslated region variants in 8,040 undiagnosed individuals with rare disease.
BACKGROUND: Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. METHODS: We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8,040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7,862 unrelated probands against matched unaffected controls. RESULTS: We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. CONCLUSIONS: Overall, we demonstrate the value of screening promoters and UTRs to uncover additional diagnoses for previously undiagnosed individuals with rare disease and provide a framework for doing so without dramatically increasing interpretation burden.
ASPP2 binds to hepatitis C virus NS5A protein via an SH3 domain/PxxP motif-mediated interaction and potentiates infection
Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.
Selective ROCK Inhibitor Enhances Blood Flow Recovery after Hindlimb Ischemia
The impairment in microvascular network formation could delay the restoration of blood flow after acute limb ischemia. A high-content screen of a GSK-published kinase inhibitor library identified a set of ROCK inhibitor hits enhancing endothelial network formation. Subsequent kinase activity profiling against a panel of 224 protein kinases showed that two indazole-based ROCK inhibitor hits exhibited high selectivity for ROCK1 and ROCK2 isoforms compared to other ROCK inhibitors. One of the chemical entities, GSK429286, was selected for follow-up studies. We found that GSK429286 was ten times more potent in enhancing endothelial tube formation than Fasudil, a classic ROCK inhibitor. ROCK1 inhibition by RNAi phenocopied the angiogenic phenotype of the GSK429286 compound. Using an organotypic angiogenesis co-culture assay, we showed that GSK429286 formed a dense vascular network with thicker endothelial tubes. Next, mice received either vehicle or GSK429286 (10 mg/kg i.p.) for seven days after hindlimb ischemia induction. As assessed by laser speckle contrast imaging, GSK429286 potentiated blood flow recovery after ischemia induction. At the histological level, we found that GSK429286 significantly increased the size of new microvessels in the regenerating areas of ischemic muscles compared with vehicle-treated ones. Our findings reveal that selective ROCK inhibitors have in vitro pro-angiogenic properties and therapeutic potential to restore blood flow in limb ischemia.
Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera
The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.