Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Super-resolution optical microscopy allows us to study immunological processes on the molecular level. We can get new insights into how our body reacts to viral or bacterial attacks. This has the potential to help us design new drugs and developing new ways of treating diseases.

Q: Can you tell us about the techniques you use to study living cells?

CE: It's called super-resolution optical microscopy. Why do we use optical microscopy? Because to study living cells you want to be non-invasive, and light and using lenses that are far away from the cells is optimum for that. But there's a problem with using these tools because the spatial resolution is limited. If you study processes within the cell at some point it just appears blurred on an image, you cannot resolve these details. What I worked on over the last few years is trying to surpass this limitation: we are connecting it with fluorescent labels. We can somehow manipulate these fluorescent labels to surpass this physical barrier. Now we can study the living cell with unprecedented spatial resolution.

Q: What is Nano-immunology?

CE: We use these super-resolution microscopes to study immunological processes like processes that go on when a virus attacks the body, how do the cells react on this? By using these super-resolve techniques we can now study these reactions on the molecular level, down to the single protein level.

Q: Can this technology help us treat disease?

CE: It can because now we can get new insights into how our body reacts to viral or bacterial attacks on the molecular level. Not so much is known so far, now we can really dig into this and resolve new processes, new details of these attack responses.

Q: What are the most important lines of research that have developed in the last 5 or 10 years?

CE: One is based on our super-resolution microscopy techniques because now we get more sensitive to study the living cell, study processes. On the other hand drug discovery wants to use more sensitive tools: fluorescence microscopy is one of these tools. Now proteins with better resolution will allow us to approach these problems with much more detail and much more precision.

Q: Why does your line of research matter? Why should we put money into it?

CE: The super-resolution microscopy techniques, we know that they work but to apply them and to apply them in a way that we can resolve much more detail on what is going on after viral and bacterial attacks gives of course a huge potential in finding out how drugs interact on the molecular level. I came to Oxford because it's a big chance to show that these super-resolution microscopes really work and a really important application. My own personal reasons are that I have some diseases in my family and even a death-case and I would just love to contribute to biomedical research in this way.

Q: How does your research fit into translational medicine within the department?

CE: Resolving new details on the molecular level and how drugs interact on the molecular level gives a lot of potential to design new drugs, to develop new drugs, in a high-throughput screening platform and translate this into new ways of treating diseases.

Christian Eggeling

To study complex biological and immunological systems, such as living cells, scientists rely on highly sensitive and non-invasive analysis techniques, including far-field fluorescence microscopy. With the aim of better understanding immunological processes, Professor Christian Eggeling's research focuses on the application and development of superior, ultra-sensitive, live-cell fluorescence microscopy techniques with spatial resolution down to the molecular scale.

Professor Christian Eggeling now works at the Radcliffe Department of Medicine.

More podcasts related to Ex-faculty podcasts

Raghib Ali: INDOX Cancer Research Network

INDOX is a collaboration between Oxford and twelve leading cancer centres in India. It aims to develop effective and affordable cancer treatments in low and middle income countries, to improve the early detection of cancer, and to reduce the incidence of cancer by establishing the population specific risk factors.

Richard Antrobus: Universal Flu Vaccine

A Universal Flu Vaccine would protect against a wide range of strains of the virus. Universal vaccines target the parts of the virus that stay relatively stable and are the same between different strains of flu. The ultimate goal is to produce a vaccine that will eventually replace the normal seasonal flu jab.

Colin Baigent: Lowering cholesterol in chronic kidney disease

The SHARP study involved almost 9,500 volunteers aged 40 or over with chronic kidney disease recruited from 380 hospitals in 18 countries. Volunteers were randomly allocated to take either cholesterol-lowering therapy with a tablet containing ezetimibe 10mg daily and simvastatin 20mg daily, or matching dummy "placebo" tablets for an average of 5 years.

Colin Baigent: Wider statin use saves lives

Prof Colin Baigent discusses how the benefits outweigh the hazards of Cholesterol-lowering drugs.

Paul Bowness: Spondyloarthritis

Spondyloarthritis describes a group of arthritic illnesses where there is inflammation of the joints of the lower back. Joints become painful and stiff, and inflammation ultimately fuses the spine. A better understanding of the role of various immune components might help us better prevent it and perhaps cure it.

Vincenzo Cerundolo: Cancer immunology

The development of therapeutic vaccines is more challenging. Current lines of research include the development of antibodies blocking inhibitory T cell signals, and the characterisation of adjuvants.

Hal Drakesmith: Iron and Infection

Pathogens can escape recognition by the immune system, but they require iron from their host to grow and spread. If iron availability is high, infection can progress more rapidly. Diverting iron away from invading microbes slows their growth, giving time for our immune mechanisms to clear the infection. Manipulating iron transport might lead to new strategies to combat infections.

Barbara Fielding: Metabolism of Fatty Acids

Obesity puts a huge strain on health care services in the UK, with 61% of people in England being overweight. By tracing fats containing heavy atoms from meals into the blood, her aim is to learn more about fat metabolism and target treatments for the complications associated with obesity and diabetes.

Alexander Finlayson: MedicineAfrica

This podcast presents the research done by Dr Alexander Finlayson whilst working in the Nuffield Department of Medicine. Dr Finlayson now works at the Nuffield Department of Population Health.

Jonathan Flint: Psychiatric Genetics

Every psychiatric disorder has a genetic contribution. Although anxiety and depression are very common diseases, current treatments are not very good. A better understanding of the contribution of genetic variants might help us better diagnose as well as develop new therapies.

Translational Medicine

From Bench to Bedside

Ultimately, medical research must translate into improved treatments for patients. At the Nuffield Department of Medicine, our researchers collaborate to develop better health care, improved quality of life, and enhanced preventative measures for all patients. Our findings in the laboratory are translated into changes in clinical practice, from bench to bedside.