register interest

Professor Peter Gething

Research Area: Global Health
Technology Exchange: Bioinformatics and Computational biology
Keywords: Malaria, Geospatial Modelling, GIS and Bayesian Statistics
Web Links:

My interests are in the development and application of empirical and biological models to address policy-relevant questions in tropical health. I lead a team of quantitative epidemiologists as part of the Malaria Atlas Project with support from the Medical Research Council and the Bill and Melinda Gates Foundation. Our focus is the geospatial modelling of malaria endemicity, using Bayesian geostatistical models to map malaria risk, examine patterns of change, and estimate clinical burden. Other work has considered the interactions between climate and vector ecology, the rational use of routine health reporting data, treatment seeking behaviour and transport models.

Name Department Institution Country
Dr Catherine Moyes Big Data Institute Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Professor Richard J Maude Tropical Medicine Oxford University, Bangkok Thailand
Professor J. Kevin Baird Tropical Medicine Oxford University, Jakarta Indonesia
Dalrymple U, Arambepola R, Gething PW, Cameron E. 2018. How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malar J, 17 (1), pp. 228. | Show Abstract | Read more

BACKGROUND: Rapid diagnostic tests (RDTs) are increasingly becoming a paradigm for both clinical diagnosis of malaria infections and for estimating community parasite prevalence in household malaria indicator surveys in malaria-endemic countries. The antigens detected by RDTs are known to persist in the blood after treatment with anti-malarials, but reports on the duration of persistence (and the effect this has on RDT positivity) of these antigens post-treatment have been variable. METHODS: In this review, published studies on the persistence of positivity of RDTs post-treatment are collated, and a bespoke Bayesian survival model is fit to estimate the number of days RDTs remain positive after treatment. RESULTS: Half of RDTs that detect the antigen histidine-rich protein II (HRP2) are still positive 15 (5-32) days post-treatment, 13 days longer than RDTs that detect the antigen Plasmodium lactate dehydrogenase, and that 5% of HRP2 RDTs are still positive 36 (21-61) days after treatment. The duration of persistent positivity for combination RDTs that detect both antigens falls between that for HRP2- or pLDH-only RDTs, with half of RDTs remaining positive at 7 (2-20) days post-treatment. This study shows that children display persistent RDT positivity for longer after treatment than adults, and that persistent positivity is more common when an individual is treated with artemisinin combination therapy than when treated with other anti-malarials. CONCLUSIONS: RDTs remain positive for a highly variable amount of time after treatment with anti-malarials, and the duration of positivity is highly dependent on the type of RDT used for diagnosis. Additionally, age and treatment both impact the duration of persistence of RDT positivity. The results presented here suggest that caution should be taken when using RDT-derived diagnostic outcomes from cross-sectional data where individuals have had a recent history of anti-malarial treatment.

GBD 2016 Healthcare Access and Quality Collaborators. 2018. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet, 391 (10136), pp. 2236-2271. | Show Abstract | Read more

BACKGROUND: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. METHODS: Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. FINDINGS: In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. INTERPRETATION: GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations. FUNDING: Bill & Melinda Gates Foundation.

Kang SY, Battle KE, Gibson HS, Ratsimbasoa A, Randrianarivelojosia M, Ramboarina S, Zimmerman PA, Weiss DJ, Cameron E, Gething PW, Howes RE. 2018. Spatio-temporal mapping of Madagascar's Malaria Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016. BMC Med, 16 (1), pp. 71. | Show Abstract | Read more

BACKGROUND: Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. METHODS: A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. RESULTS: Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. CONCLUSIONS: Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.

Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E, Trett A, Weetman D, Smith DL, Hemingway J, Coleman M et al. 2018. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci U S A, 115 (23), pp. 5938-5943. | Show Abstract | Read more

The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.

Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Gupta S, Gething PW. 2018. Correction: Quantifying the contribution of Plasmodium falciparum malaria to febrile illness amongst African children. Elife, 7 | Read more

Graetz N, Friedman J, Osgood-Zimmerman A, Burstein R, Biehl MH, Shields C, Mosser JF, Casey DC, Deshpande A, Earl L et al. 2018. Mapping local variation in educational attainment across Africa. Nature, 555 (7694), pp. 48-53. | Show Abstract | Read more

Educational attainment for women of reproductive age is linked to reduced child and maternal mortality, lower fertility and improved reproductive health. Comparable analyses of attainment exist only at the national level, potentially obscuring patterns in subnational inequality. Evidence suggests that wide disparities between urban and rural populations exist, raising questions about where the majority of progress towards the education targets of the Sustainable Development Goals is occurring in African countries. Here we explore within-country inequalities by predicting years of schooling across five by five kilometre grids, generating estimates of average educational attainment by age and sex at subnational levels. Despite marked progress in attainment from 2000 to 2015 across Africa, substantial differences persist between locations and sexes. These differences have widened in many countries, particularly across the Sahel. These high-resolution, comparable estimates improve the ability of decision-makers to plan the precisely targeted interventions that will be necessary to deliver progress during the era of the Sustainable Development Goals.

Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L, Graetz N, Kinyoki DK, Ray SE, Bhatt S et al. 2018. Mapping child growth failure in Africa between 2000 and 2015. Nature, 555 (7694), pp. 41-47. | Show Abstract | Read more

Insufficient growth during childhood is associated with poor health outcomes and an increased risk of death. Between 2000 and 2015, nearly all African countries demonstrated improvements for children under 5 years old for stunting, wasting, and underweight, the core components of child growth failure. Here we show that striking subnational heterogeneity in levels and trends of child growth remains. If current rates of progress are sustained, many areas of Africa will meet the World Health Organization Global Targets 2025 to improve maternal, infant and young child nutrition, but high levels of growth failure will persist across the Sahel. At these rates, much, if not all of the continent will fail to meet the Sustainable Development Goal target-to end malnutrition by 2030. Geospatial estimates of child growth failure provide a baseline for measuring progress as well as a precision public health platform to target interventions to those populations with the greatest need, in order to reduce health disparities and accelerate progress.

Burgert-Brucker CR, Dontamsetti T, Gething PW. 2018. The DHS Program's Modeled Surfaces Spatial Datasets. Stud Fam Plann, 49 (1), pp. 87-92. | Show Abstract | Read more

Spatially interpolated map surface datasets for key development indicators are being produced and publicly shared using population-based surveys from the USAID-funded Demographic and Health Survey (DHS) Program. Each modeled surface is produced with standardized geostatistical modeling methods. For each indicator, a package is available that includes spatial raster grids of 5 × 5 km pixels for the point estimate surface and an uncertainty surface, along with validation statistics and other model diagnostic data. The maps are publicly available for download on the DHS Program Spatial Data Repository at http://spatialdata.dhsprogram.com/. The modeled surfaces are produced with publicly available geo-referenced data on each indicator as collected by the DHS Program, augmented with other relevant spatial data sources that act as covariates. A Bayesian model-based geostatistical (MBG) approach is used to generate the modeled surfaces. Spatially modeled surfaces can be used to support and improve decision-making at multiple levels within many development programs including health, population, family planning, nutrition, and water and sanitation. The modeled surfaces can be used in their original 5 × 5 km pixel format, operationalized to other geographic areas as relevant for the program, or linked to DHS or other survey data for additional analysis.

Weiss DJ, Nelson A, Gibson HS, Temperley W, Peedell S, Lieber A, Hancher M, Poyart E, Belchior S, Fullman N et al. 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 553 (7688), pp. 333-336. | Show Abstract | Read more

The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of 'leaving no one behind' established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, Moonen B, Schapira A, Smith DL. 2017. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J, 16 (1), pp. 459. | Show Abstract | Read more

There is a long history of considering the constituent components of malaria risk and the malaria transmission cycle via the use of mathematical models, yet strategic planning in endemic countries tends not to take full advantage of available disease intelligence to tailor interventions. National malaria programmes typically make operational decisions about where to implement vector control and surveillance activities based upon simple categorizations of annual parasite incidence. With technological advances, an enormous opportunity exists to better target specific malaria interventions to the places where they will have greatest impact by mapping and evaluating metrics related to a variety of risk components, each of which describes a different facet of the transmission cycle. Here, these components and their implications for operational decision-making are reviewed. For each component, related mappable malaria metrics are also described which may be measured and evaluated by malaria programmes seeking to better understand the determinants of malaria risk. Implementing tailored programmes based on knowledge of the heterogeneous distribution of the drivers of malaria transmission rather than only consideration of traditional metrics such as case incidence has the potential to result in substantial improvements in decision-making. As programmes improve their ability to prioritize their available tools to the places where evidence suggests they will be most effective, elimination aspirations may become increasingly feasible.

Fullman N, Barber RM, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abera SF et al. 2017. Department of Error The Lancet, 390 (10106), pp. e38-e38. | Show Abstract | Read more

© 2017 Elsevier Ltd GBD 2016 SDG Collaborators. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 2017; 390: 1423–59—The full-text version of this Article has been updated so that the list of authors is displayed in the correct order, in line with the pdf version, rather than in alphabetical order. This correction has been made to the online version as of Oct 12, 2017.

Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Gupta S, Gething PW. 2017. Quantifying the contribution of Plasmodium falciparum malaria to febrile illness amongst African children. Elife, 6 | Show Abstract | Read more

Suspected malaria cases in Africa increasingly receive a rapid diagnostic test (RDT) before antimalarials are prescribed. While this ensures efficient use of resources to clear parasites, the underlying cause of the individual's fever remains unknown due to potential coinfection with a non-malarial febrile illness. Widespread use of RDTs does not necessarily prevent over-estimation of clinical malaria cases or sub-optimal case management of febrile patients. We present a new approach that allows inference of the spatiotemporal prevalence of both Plasmodium falciparum malaria-attributable and non-malarial fever in sub-Saharan African children from 2006 to 2014. We estimate that 35.7% of all self-reported fevers were accompanied by a malaria infection in 2014, but that only 28.0% of those (10.0% of all fevers) were causally attributable to malaria. Most fevers among malaria-positive children are therefore caused by non-malaria illnesses. This refined understanding can help improve interpretation of the burden of febrile illness and shape policy on fever case management.

Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Gupta S, Gething PW. 2017. Quantifying the contribution of plasmodium falciparum malaria to febrile illness amongst african children eLife, 6 | Show Abstract | Read more

© Dalrymple et al. Suspected malaria cases in Africa increasingly receive a rapid diagnostic test (RDT) before antimalarials are prescribed. While this ensures efficient use of resources to clear parasites, the underlying cause of the individual’s fever remains unknown due to potential coinfection with a non-malarial febrile illness. Widespread use of RDTs does not necessarily prevent over-estimation of clinical malaria cases or sub-optimal case management of febrile patients. We present a new approach that allows inference of the spatiotemporal prevalence of both Plasmodium falciparum malaria-attributable and non-malarial fever in sub-Saharan African children from 2006 to 2014. We estimate that 35.7% of all self-reported fevers were accompanied by a malaria infection in 2014, but that only 28.0% of those (10.0% of all fevers) were causally attributable to malaria. Most fevers among malaria-positive children are therefore caused by non-malaria illnesses. This refined understanding can help improve interpretation of the burden of febrile illness and shape policy on fever case management.

Pigott DM, Deshpande A, Letourneau I, Morozoff C, Reiner RC, Kraemer MUG, Brent SE, Bogoch II, Khan K, Biehl MH et al. 2017. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet, 390 (10113), pp. 2662-2672. | Show Abstract | Read more

BACKGROUND: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean-Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. METHODS: In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. FINDINGS: We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. INTERPRETATION: Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support. FUNDING: Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development.

Fullman N, Barber RM, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abera SF et al. 2017. Department of Error The Lancet, 390 (10102), pp. e23-e23. | Show Abstract | Read more

© 2017 Elsevier Ltd GBD 2016 SDG Collaborators. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 2017; 390: 1423–59—In figure 8B of this Article (published Online First on Sept 12, 2017), the number of indicator targets has been changed from 1 to 9 for Turkmenistan, from 0 to 1 for Afghanistan, and from 1 to 2 for Yemen. Ettore Beghi, Neeraj Bhala, Hélène Carabin, Raimundas Lunevicius, Donald H Silberberg, and Caitlyn Steiner have been added to the list of GBD 2016 SDG Collaborators. Their affiliations, along with the affiliation of Soumya Swaminathan, have been added to the Affiliations section. These corrections have been made to the online version as of Sept 18, 2017, and the printed Article is correct.

Midekisa A, Holl F, Savory DJ, Andrade-Pacheco R, Gething PW, Bennett A, Sturrock HJW. 2017. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS One, 12 (9), pp. e0184926. | Show Abstract | Read more

Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

Golding N, Burstein R, Longbottom J, Browne AJ, Fullman N, Osgood-Zimmerman A, Earl L, Bhatt S, Cameron E, Casey DC et al. 2017. Mapping under-5 and neonatal mortality in Africa, 2000-15: a baseline analysis for the Sustainable Development Goals. Lancet, 390 (10108), pp. 2171-2182. | Show Abstract | Read more

BACKGROUND: During the Millennium Development Goal (MDG) era, many countries in Africa achieved marked reductions in under-5 and neonatal mortality. Yet the pace of progress toward these goals substantially varied at the national level, demonstrating an essential need for tracking even more local trends in child mortality. With the adoption of the Sustainable Development Goals (SDGs) in 2015, which established ambitious targets for improving child survival by 2030, optimal intervention planning and targeting will require understanding of trends and rates of progress at a higher spatial resolution. In this study, we aimed to generate high-resolution estimates of under-5 and neonatal all-cause mortality across 46 countries in Africa. METHODS: We assembled 235 geographically resolved household survey and census data sources on child deaths to produce estimates of under-5 and neonatal mortality at a resolution of 5 × 5 km grid cells across 46 African countries for 2000, 2005, 2010, and 2015. We used a Bayesian geostatistical analytical framework to generate these estimates, and implemented predictive validity tests. In addition to reporting 5 × 5 km estimates, we also aggregated results obtained from these estimates into three different levels-national, and subnational administrative levels 1 and 2-to provide the full range of geospatial resolution that local, national, and global decision makers might require. FINDINGS: Amid improving child survival in Africa, there was substantial heterogeneity in absolute levels of under-5 and neonatal mortality in 2015, as well as the annualised rates of decline achieved from 2000 to 2015. Subnational areas in countries such as Botswana, Rwanda, and Ethiopia recorded some of the largest decreases in child mortality rates since 2000, positioning them well to achieve SDG targets by 2030 or earlier. Yet these places were the exception for Africa, since many areas, particularly in central and western Africa, must reduce under-5 mortality rates by at least 8·8% per year, between 2015 and 2030, to achieve the SDG 3.2 target for under-5 mortality by 2030. INTERPRETATION: In the absence of unprecedented political commitment, financial support, and medical advances, the viability of SDG 3.2 achievement in Africa is precarious at best. By producing under-5 and neonatal mortality rates at multiple levels of geospatial resolution over time, this study provides key information for decision makers to target interventions at populations in the greatest need. In an era when precision public health increasingly has the potential to transform the design, implementation, and impact of health programmes, our 5 × 5 km estimates of child mortality in Africa provide a baseline against which local, national, and global stakeholders can map the pathways for ending preventable child deaths by 2030. FUNDING: Bill & Melinda Gates Foundation.

GBD 2016 Causes of Death Collaborators. 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1151-1210. | Show Abstract | Read more

BACKGROUND: Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. METHODS: We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. FINDINGS: The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2-73·2) of deaths in 2016 with 19·3% (18·5-20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00-8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006-16-age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176-181) increase in deaths in ages 90-94 years and a 210% (208-212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. INTERPRETATION: The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. FUNDING: Bill & Melinda Gates Foundation.

GBD 2016 Risk Factors Collaborators. 2017. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1345-1422. | Show Abstract | Read more

BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context. METHODS: We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined. FINDINGS: Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124·1 million DALYs [95% UI 111·2 million to 137·0 million]), high systolic blood pressure (122·2 million DALYs [110·3 million to 133·3 million], and low birthweight and short gestation (83·0 million DALYs [78·3 million to 87·7 million]), and for women, were high systolic blood pressure (89·9 million DALYs [80·9 million to 98·2 million]), high body-mass index (64·8 million DALYs [44·4 million to 87·6 million]), and high fasting plasma glucose (63·8 million DALYs [53·2 million to 76·3 million]). In 2016 in 113 countries, the leading risk factor in terms of attributable DALYs was a metabolic risk factor. Smoking remained among the leading five risk factors for DALYs for 109 countries, while low birthweight and short gestation was the leading risk factor for DALYs in 38 countries, particularly in sub-Saharan Africa and South Asia. In terms of important drivers of change in trends of burden attributable to risk factors, between 2006 and 2016 exposure to risks explains an 9·3% (6·9-11·6) decline in deaths and a 10·8% (8·3-13·1) decrease in DALYs at the global level, while population ageing accounts for 14·9% (12·7-17·5) of deaths and 6·2% (3·9-8·7) of DALYs, and population growth for 12·4% (10·1-14·9) of deaths and 12·4% (10·1-14·9) of DALYs. The largest contribution of trends in risk exposure to disease burden is seen between ages 1 year and 4 years, where a decline of 27·3% (24·9-29·7) of the change in DALYs between 2006 and 2016 can be attributed to declines in exposure to risks. INTERPRETATION: Increasingly detailed understanding of the trends in risk exposure and the RRs for each risk-outcome pair provide insights into both the magnitude of health loss attributable to risks and how modification of risk exposure has contributed to health trends. Metabolic risks warrant particular policy attention, due to their large contribution to global disease burden, increasing trends, and variable patterns across countries at the same level of development. GBD 2016 findings show that, while it has huge potential to improve health, risk modification has played a relatively small part in the past decade. FUNDING: The Bill & Melinda Gates Foundation, Bloomberg Philanthropies.

GBD 2016 DALYs and HALE Collaborators. 2017. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1260-1344. | Show Abstract | Read more

BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation.

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. 2017. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1211-1259. | Show Abstract | Read more

BACKGROUND: As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016. METHODS: We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8-75·9 million [7·2%, 6·0-8·3]), 45·1 million (29·0-62·8 million [5·6%, 4·0-7·2]), 36·3 million (25·3-50·9 million [4·5%, 3·8-5·3]), 34·7 million (23·0-49·6 million [4·3%, 3·5-5·2]), and 34·1 million (23·5-46·0 million [4·2%, 3·2-5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3-3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0-11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimer's disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862-11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018-19 228). INTERPRETATION: The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response. FUNDING: Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.

GBD 2016 Mortality Collaborators. 2017. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1084-1150. | Show Abstract | Read more

BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016. INTERPRETATION: Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled. FUNDING: Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.

GBD 2016 SDG Collaborators. 2017. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet, 390 (10100), pp. 1423-1459. | Show Abstract | Read more

BACKGROUND: The UN's Sustainable Development Goals (SDGs) are grounded in the global ambition of "leaving no one behind". Understanding today's gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990-2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. METHODS: We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0-100, with 0 as the 2·5th percentile estimated between 1990 and 2030, and 100 as the 97·5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. FINDINGS: Globally, the median health-related SDG index was 56·7 (IQR 31·9-66·8) in 2016 and country-level performance markedly varied, with Singapore (86·8, 95% uncertainty interval 84·6-88·9), Iceland (86·0, 84·1-87·6), and Sweden (85·6, 81·8-87·8) having the highest levels in 2016 and Afghanistan (10·9, 9·6-11·9), the Central African Republic (11·0, 8·8-13·8), and Somalia (11·3, 9·5-13·1) recording the lowest. Between 2000 and 2016, notable improvements in the UHC index were achieved by several countries, including Cambodia, Rwanda, Equatorial Guinea, Laos, Turkey, and China; however, a number of countries, such as Lesotho and the Central African Republic, but also high-income countries, such as the USA, showed minimal gains. Based on projections of past trends, the median number of SDG targets attained in 2030 was five (IQR 2-8) of the 24 defined targets currently measured. Globally, projected target attainment considerably varied by SDG indicator, ranging from more than 60% of countries projected to reach targets for under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria, to less than 5% of countries projected to achieve targets linked to 11 indicator targets, including those for childhood overweight, tuberculosis, and road injury mortality. For several of the health-related SDGs, meeting defined targets hinges upon substantially faster progress than what most countries have achieved in the past. INTERPRETATION: GBD 2016 provides an updated and expanded evidence base on where the world currently stands in terms of the health-related SDGs. Our improved measure of UHC offers a basis to monitor the expansion of health services necessary to meet the SDGs. Based on past rates of progress, many places are facing challenges in meeting defined health-related SDG targets, particularly among countries that are the worst off. In view of the early stages of SDG implementation, however, opportunity remains to take actions to accelerate progress, as shown by the catalytic effects of adopting the Millennium Development Goals after 2000. With the SDGs' broader, bolder development agenda, multisectoral commitments and investments are vital to make the health-related SDGs within reach of all populations. FUNDING: Bill & Melinda Gates Foundation.

Bhatt S, Cameron E, Flaxman SR, Weiss DJ, Smith DL, Gething PW. 2017. Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. J R Soc Interface, 14 (134), pp. 20170520-20170520. | Show Abstract | Read more

Maps of infectious disease-charting spatial variations in the force of infection, degree of endemicity and the burden on human health-provide an essential evidence base to support planning towards global health targets. Contemporary disease mapping efforts have embraced statistical modelling approaches to properly acknowledge uncertainties in both the available measurements and their spatial interpolation. The most common such approach is Gaussian process regression, a mathematical framework composed of two components: a mean function harnessing the predictive power of multiple independent variables, and a covariance function yielding spatio-temporal shrinkage against residual variation from the mean. Though many techniques have been developed to improve the flexibility and fitting of the covariance function, models for the mean function have typically been restricted to simple linear terms. For infectious diseases, known to be driven by complex interactions between environmental and socio-economic factors, improved modelling of the mean function can greatly boost predictive power. Here, we present an ensemble approach based on stacked generalization that allows for multiple nonlinear algorithmic mean functions to be jointly embedded within the Gaussian process framework. We apply this method to mapping Plasmodium falciparum prevalence data in sub-Saharan Africa and show that the generalized ensemble approach markedly outperforms any individual method.

Savory DJ, Andrade-Pacheco R, Gething PW, Midekisa A, Bennett A, Sturrock HJW. 2017. Intercalibration and Gaussian Process Modeling of Nighttime Lights Imagery for Measuring Urbanization Trends in Africa 2000-2013 REMOTE SENSING, 9 (7), pp. 713-713. | Show Abstract | Read more

© 2017 by the authors. Sub-Saharan Africa currently has the world's highest urban population growth rate of any continent at roughly 4.2% annually. A better understanding of the spatiotemporal dynamics of urbanization across the continent is important to a range of fields including public health, economics, and environmental sciences. Nighttime lights imagery (NTL), maintained by the National Oceanic and Atmospheric Administration, offers a unique vantage point for studying trends in urbanization. A well-documented deficiency of this dataset is the lack of intra- and inter-annual calibration between satellites, which makes the imagery unsuitable for temporal analysis in their raw format. Here we have generated an 'intercalibrated' time series of annual NTL images for Africa (2000-2013) by building on the widely used invariant region and quadratic regression method (IRQR). Gaussian process methods (GP) were used to identify NTL latent functions independent from the temporal noise signals in the annual datasets. The corrected time series was used to explore the positive association of NTL with Gross Domestic Product (GDP) and urban population (UP). Additionally, the proportion of change in 'lit area' occurring in urban areas was measured by defining urban agglomerations as contiguously lit pixels of > 250 km2, with all other pixels being rural. For validation, the IRQR and GP time series were compared as predictors of the invariant region dataset. Root mean square error values for the GP smoothed dataset were substantially lower. Correlation of NTL with GDP and UP using GP smoothing showed significant increases in R2 over the IRQR method on both continental and national scales. Urban growth results suggested that the majority of growth in lit pixels between 2000 and 2013 occurred in rural areas. With this study, we demonstrated the effectiveness of GP to improve conventional intercalibration, used NTL to describe temporal patterns of urbanization in Africa, and detected NTL responses to environmental and humanitarian crises. The smoothed datasets are freely available for further use.

Gething PW, Hay SI, Lim SS. 2017. Plasmodium falciparum Mortality in Africa between 1990 and 2015 REPLY NEW ENGLAND JOURNAL OF MEDICINE, 376 (25), pp. 2494-2494.

Vink JP, MacKinnon TS. 2017. Plasmodium falciparum Mortality in Africa between 1990 and 2015. N Engl J Med, 376 (25), pp. 2493. | Read more

Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, Gething PW, Marshall JM, Chaccour CJ, Tusting LS. 2017. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Glob Health, 2 (2), pp. e000198. | Show Abstract | Read more

Protecting individuals and households against mosquito bites with long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS) can suppress entire populations of unusually efficient malaria vector species that predominantly feed indoors on humans. Mosquitoes which usually feed on animals are less reliant on human blood, so they are far less vulnerable to population suppression effects of such human-targeted insecticidal measures. Fortunately, the dozens of mosquito species which primarily feed on animals are also relatively inefficient vectors of malaria, so personal protection against mosquito bites may be sufficient to eliminate transmission. However, a handful of mosquito species are particularly problematic vectors of residual malaria transmission, because they feed readily on both humans and animals. These unusual vectors feed often enough on humans to be potent malaria vectors, but also often enough on animals to evade population control with LLINs, IRS or any other insecticidal personal protection measure targeted only to humans. Anopheles arabiensis and A. coluzzii in Africa, A. darlingi in South America and A. farauti in Oceania, as well as A. culicifacies species E, A. fluviatilis species S, A. lesteri and A. minimus in Asia, all feed readily on either humans or animals and collectively mediate residual malaria transmission across most of the tropics. Eliminating malaria transmission by vectors exhibiting such dual host preferences will require aggressive mosquito population abatement, rather than just personal protection of humans. Population suppression of even these particularly troublesome vectors is achievable with a variety of existing vector control technologies that remain underdeveloped or underexploited.

Bennett A, Bisanzio D, Yukich JO, Mappin B, Fergus CA, Lynch M, Cibulskis RE, Bhatt S, Weiss DJ, Cameron E et al. 2017. Population coverage of artemisinin-based combination treatment in children younger than 5 years with fever and Plasmodium falciparum infection in Africa, 2003-2015: a modelling study using data from national surveys. Lancet Glob Health, 5 (4), pp. e418-e427. | Show Abstract | Read more

BACKGROUND: Artemisinin-based combination therapies (ACTs) are the most effective treatment for uncomplicated Plasmodium falciparum malaria infection. A commonly used indicator for monitoring and assessing progress in coverage of malaria treatment is the proportion of children younger than 5 years with reported fever in the previous 14 days who have received an ACT. We propose an improved indicator that incorporates parasite infection status (as assessed by a rapid diagnostic test [RDT]), which is available in recent household surveys. In this study we estimated the annual proportion of children younger than 5 years with fever and a positive RDT in Africa who received an ACT in 2003-15. METHODS: Our modelling study used cross-sectional data on treatment for fever and RDT status for children younger than 5 years compiled from all nationally available representative household surveys (the Malaria Indicator Surveys, Demographic and Health Surveys, and Multiple Indicator Cluster Surveys) across sub-Saharan Africa between 2003 and 2015. Estimates for the proportion of children younger than 5 years with a fever within the previous 14 days and P falciparum infection assessed by RDT who received an ACT were incorporated in a generalised additive mixed model, including data on ACT distributions, to estimate coverage across all countries and time periods. We did random effects meta-analyses to examine individual, household, and community effects associated with ACT coverage. FINDINGS: We obtained data on 201 704 children younger than 5 years from 103 surveys (22 MIS, 61 DHS, and 20 MICS) across 33 countries. RDT results were available for 40 of these surveys including 40 261 (20%) children, and we predicted RDT status for the remaining 161 443 (80%) children. Our results showed that ACT coverage in children younger than 5 years with a fever and P falciparum infection increased across sub-Saharan Africa in 2003-15, but even in 2015, only 19·7% (95% CI 15·6-24·8) of children younger than 5 years with a fever and P falciparum infection received an ACT. In meta-analyses, children younger than 5 years were more likely to receive an ACT for fever and P falciparum infection if they lived in an urban area (vs rural area; odds ratio [OR] 1·18, 95% CI 1·06-1·31), had household wealth above the national median (vs wealth below the median; OR 1·26, 1·16-1·39), had a caregiver with any education (vs no education; OR 1·31, 1·22-1·41), had a household insecticide-treated net (ITN; vs no ITN; OR 1·21, 1·13-1·29), were older than 2 years (vs ≤2 years; OR 1·09, 1·01-1·17), or lived in an area with a higher mean P falciparum prevalence in children aged 2-10 years (OR 1·12, 1·02-1·23). In the subgroup of children for whom treatment was sought, those who sought treatment in the public sector were more likely to receive an ACT (vs the private sector; OR 3·18, 2·67-3·78). INTERPRETATION: Despite progress during the 2003-15 malaria programme, ACT treatment for children with malaria remains unacceptably low. More work is needed at the country level to understand how health-care access, service delivery, and ACT supply might be improved to ensure appropriate treatment for all children with malaria. FUNDING: US President's Malaria Initiative and Medicines for Malaria Venture.

Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, Gething PW. 2017. Housing Improvements and Malaria Risk in Sub-Saharan Africa: A Multi-Country Analysis of Survey Data. PLoS Med, 14 (2), pp. e1002234. | Show Abstract | Read more

BACKGROUND: Improvements to housing may contribute to malaria control and elimination by reducing house entry by malaria vectors and thus exposure to biting. We tested the hypothesis that the odds of malaria infection are lower in modern, improved housing compared to traditional housing in sub-Saharan Africa (SSA). METHODS AND FINDINGS: We analysed 15 Demographic and Health Surveys (DHS) and 14 Malaria Indicator Surveys (MIS) conducted in 21 countries in SSA between 2008 and 2015 that measured malaria infection by microscopy or rapid diagnostic test (RDT). DHS/MIS surveys record whether houses are built with finished materials (e.g., metal) or rudimentary materials (e.g., thatch). This information was used to develop a binary housing quality variable where houses built using finished wall, roof, and floor materials were classified as "modern", and all other houses were classified as "traditional". Conditional logistic regression was used to determine the association between housing quality and prevalence of malaria infection in children aged 0-5 y, adjusting for age, gender, insecticide-treated net (ITN) use, indoor residual spraying, household wealth, and geographic cluster. Individual survey odds ratios (ORs) were combined to determine a summary OR using a random effects meta-analysis. Of 284,532 total children surveyed, 139,318 were tested for malaria infection using microscopy (n = 131,652) or RDT (n = 138,540). Within individual surveys, malaria prevalence measured by microscopy ranged from 0.4% (Madagascar 2011) to 45.5% (Burkina Faso 2010) among children living in modern houses and from 0.4% (The Gambia 2013) to 70.6% (Burkina Faso 2010) in traditional houses, and malaria prevalence measured by RDT ranged from 0.3% (Senegal 2013-2014) to 61.2% (Burkina Faso 2010) in modern houses and from 1.5% (The Gambia 2013) to 79.8% (Burkina Faso 2010) in traditional houses. Across all surveys, modern housing was associated with a 9% to 14% reduction in the odds of malaria infection (microscopy: adjusted OR 0.91, 95% CI 0.85-0.97, p = 0.003; RDT: adjusted OR 0.86, 95% CI 0.80-0.92, p < 0.001). This association was consistent regardless of ITN usage. As a comparison, the odds of malaria infection were 15% to 16% lower among ITN users versus non-users (microscopy: adjusted OR 0.84, 95% CI 0.79-0.90, p < 0.001; RDT: adjusted OR 0.85, 95% CI 0.80-0.90, p < 0.001). The main limitation of this study is that residual confounding by household wealth of the observed association between housing quality and malaria prevalence is possible, since the wealth index may not have fully captured differences in socioeconomic position; however, the use of multiple national surveys offers the advantage of a large sample size and the elimination of many biases typically associated with pooling observational data. CONCLUSIONS: Housing quality is an important risk factor for malaria infection across the spectrum of malaria endemicity in SSA, with a strength of association between housing quality and malaria similar to that observed between ITN use and malaria. Improved housing should be considered a promising intervention for malaria control and elimination and long-term prevention of reintroduction.

Coleman M, Hemingway J, Gleave KA, Wiebe A, Gething PW, Moyes CL. 2017. Developing global maps of insecticide resistance risk to improve vector control. Malar J, 16 (1), pp. 86. | Show Abstract | Read more

BACKGROUND: Significant reductions in malaria transmission have been achieved over the last 15 years with elimination occurring in a small number of countries, however, increasing drug and insecticide resistance threatens these gains. Insecticide resistance has decreased the observed mortality to the most commonly used insecticide class, the pyrethroids, and the number of alternative classes approved for use in public health is limited. Disease prevention and elimination relies on operational control of Anopheles malaria vectors, which requires the deployment of effective insecticides. Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. METHODS: Resistance data are obtained from published articles, by contacting authors and custodians of unpublished data sets. Where possible data is disaggregated to single sites and collection periods to give a fine spatial resolution. RESULTS: Currently the data set includes data from 1955 to October 2016 from 71 malaria endemic countries and 74 anopheline species. This includes data for all four classes of insecticides and associated resistance mechanisms. CONCLUSIONS: Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. The Malaria Atlas Project-Insecticide Resistance (MAP-IR) venture has been established to develop tools that will use available data to provide best estimates of the spatial distribution of insecticide resistance and help guide control programmes on this serious issue.

Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, Cameron E, Bhatt S, Gething PW, Hemingway J et al. 2017. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar J, 16 (1), pp. 85. | Show Abstract | Read more

BACKGROUND: Many of the mosquito species responsible for malaria transmission belong to a sibling complex; a taxonomic group of morphologically identical, closely related species. Sibling species often differ in several important factors that have the potential to impact malaria control, including their geographical distribution, resistance to insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on key factors such as insecticide resistance to aid more focussed, species-selective vector control. RESULTS: Within the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographical distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anopheles melas and Anopheles merus have been generated based on records that were confirmed using molecular identification methods and a model that addresses issues of sampling bias and past changes to the environment. The data available for insecticide resistance has been evaluated and differences between sibling species are apparent although further analysis is required to elucidate trends in resistance. CONCLUSIONS: Sibling species display important variability in their geographical distributions and the most important malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical occurrence data to be coupled with species-specific data on important factors for vector control including insecticide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide information to greatly improve and inform existing malaria transmission models.

Hamilton M, Mahiane G, Werst E, Sanders R, Briët O, Smith T, Cibulskis R, Cameron E, Bhatt S, Weiss DJ et al. 2017. Spectrum-Malaria: a user-friendly projection tool for health impact assessment and strategic planning by malaria control programmes in sub-Saharan Africa. Malar J, 16 (1), pp. 68. | Show Abstract | Read more

BACKGROUND: Scale-up of malaria prevention and treatment needs to continue but national strategies and budget allocations are not always evidence-based. This article presents a new modelling tool projecting malaria infection, cases and deaths to support impact evaluation, target setting and strategic planning. METHODS: Nested in the Spectrum suite of programme planning tools, the model includes historic estimates of case incidence and deaths in groups aged up to 4, 5-14, and 15+ years, and prevalence of Plasmodium falciparum infection (PfPR) among children 2-9 years, for 43 sub-Saharan African countries and their 602 provinces, from the WHO and malaria atlas project. Impacts over 2016-2030 are projected for insecticide-treated nets (ITNs), indoor residual spraying (IRS), seasonal malaria chemoprevention (SMC), and effective management of uncomplicated cases (CMU) and severe cases (CMS), using statistical functions fitted to proportional burden reductions simulated in the P. falciparum dynamic transmission model OpenMalaria. RESULTS: In projections for Nigeria, ITNs, IRS, CMU, and CMS scale-up reduced health burdens in all age groups, with largest proportional and especially absolute reductions in children up to 4 years old. Impacts increased from 8 to 10 years following scale-up, reflecting dynamic effects. For scale-up of each intervention to 80% effective coverage, CMU had the largest impacts across all health outcomes, followed by ITNs and IRS; CMS and SMC conferred additional small but rapid mortality impacts. DISCUSSION: Spectrum-Malaria's user-friendly interface and intuitive display of baseline data and scenario projections holds promise to facilitate capacity building and policy dialogue in malaria programme prioritization. The module's linking to the OneHealth Tool for costing will support use of the software for strategic budget allocation. In settings with moderately low coverage levels, such as Nigeria, improving case management and achieving universal coverage with ITNs could achieve considerable burden reductions. Projections remain to be refined and validated with local expert input data and actual policy scenarios.

Galactionova K, Tediosi F, Camponovo F, Smith TA, Gething PW, Penny MA. 2017. Country specific predictions of the cost-effectiveness of malaria vaccine RTS,S/AS01 in endemic Africa. Vaccine, 35 (1), pp. 53-60. | Show Abstract | Read more

BACKGROUND: RTS,S/AS01 is a safe and moderately efficacious vaccine considered for implementation in endemic Africa. Model predictions of impact and cost-effectiveness of this new intervention could aid in country adoption decisions. METHODS: The impact of RTS,S was assessed in 43 countries using an ensemble of models of Plasmodium falciparum epidemiology. Informed by the 32months follow-up data from the phase 3 trial, vaccine effectiveness was evaluated at country levels of malaria parasite prevalence, coverage of control interventions and immunization. Benefits and costs of the program incremental to routine malaria control were evaluated for a four dose schedule: first dose administered at six months, second and third - before 9months, and fourth dose at 27months of age. Sensitivity analyses around vaccine properties, transmission, and economic inputs were conducted. RESULTS: If implemented in all 43 countries the vaccine has the potential to avert 123 (117;129) million malaria episodes over the first 10years. Burden averted averages 18,413 (range of country median estimates 156-40,054) DALYs per 100,000 fully vaccinated children with much variation across settings primarily driven by differences in transmission intensity. At a price of $5 per dose program costs average $39.8 per fully vaccinated child with a median cost-effectiveness ratio of $188 (range $78-$22,448) per DALY averted; the ratio is lower by one third - $136 (range $116-$220) - in settings where parasite prevalence in children aged 2-10years is at or above 10%. CONCLUSION: RTS,S/AS01has the potential to substantially reduce malaria burden in children across Africa. Conditional on assumptions on price, coverage, and vaccine properties, adding RTS,S to routine malaria control interventions would be highly cost-effective. Implementation decisions will need to further consider feasibility of scaling up existing control programs, and operational constraints in reaching children at risk with the schedule.

Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, Hay SI, Gething PW, Smith DL. 2017. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis, 17 (1), pp. 98-107. | Show Abstract | Read more

BACKGROUND: Malaria remains a problem for many countries classified as malaria free through cases imported from endemic regions. Imported cases to non-endemic countries often result in delays in diagnosis, are expensive to treat, and can sometimes cause secondary local transmission. The movement of malaria in endemic countries has also contributed to the spread of drug resistance and threatens long-term eradication goals. Here we focused on quantifying the international movements of malaria to improve our understanding of these phenomena and facilitate the design of mitigation strategies. METHODS: In this meta-analysis, we studied the database of publicly available nationally reported statistics on imported malaria in the past 10 years, covering more than 50 000 individual cases. We obtained data from 40 non-endemic countries and recorded the geographical variations. FINDINGS: Infection movements were strongly skewed towards a small number of high-traffic routes between 2005 and 2015, with the west Africa region accounting for 56% (13 947/24 941) of all imported cases to non-endemic countries with a reported travel destination, and France and the UK receiving the highest number of cases, with more than 4000 reported cases per year on average. Countries strongly linked by movements of imported cases are grouped by historical, language, and travel ties. There is strong spatial clustering of plasmodium species types. INTERPRETATION: The architecture of the air network, historical ties, demographics of travellers, and malaria endemicity contribute to highly heterogeneous patterns of numbers, routes, and species compositions of parasites transported. With global malaria eradication on the international agenda, malaria control altering local transmission, and the threat of drug resistance, understanding these patterns and their drivers is increasing in importance. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, UK Medical Research Council, UK Department for International Development, Wellcome Trust.

Grist EPM, Flegg JA, Humphreys G, Mas IS, Anderson TJC, Ashley EA, Day NPJ, Dhorda M, Dondorp AM, Faiz MA et al. 2016. Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia. Int J Health Geogr, 15 (1), pp. 37. | Show Abstract | Read more

BACKGROUND: Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. METHODS: The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. RESULTS: The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. CONCLUSION: This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.

Howes RE, Mioramalala SA, Ramiranirina B, Franchard T, Rakotorahalahy AJ, Bisanzio D, Gething PW, Zimmerman PA, Ratsimbasoa A. 2016. Contemporary epidemiological overview of malaria in Madagascar: operational utility of reported routine case data for malaria control planning. Malar J, 15 (1), pp. 502. | Show Abstract | Read more

BACKGROUND: Malaria remains a major public health problem in Madagascar. Widespread scale-up of intervention coverage has led to substantial reductions in case numbers since 2000. However, political instability since 2009 has disrupted these efforts, and a resurgence of malaria has since followed. This paper re-visits the sub-national stratification of malaria transmission across Madagascar to propose a contemporary update, and evaluates the reported routine case data reported at this sub-national scale. METHODS: Two independent malariometrics were evaluated to re-examine the status of malaria across Madagascar. First, modelled maps of Plasmodium falciparum infection prevalence (PfPR) from the Malaria Atlas Project were used to update the sub-national stratification into 'ecozones' based on transmission intensity. Second, routine reports of case data from health facilities were synthesized from 2010 to 2015 to compare the sub-national epidemiology across the updated ecozones over time. Proxy indicators of data completeness are investigated. RESULTS: The epidemiology of malaria is highly diverse across the island's ecological regions, with eight contiguous ecozones emerging from the transmission intensity PfPR map. East and west coastal areas have highest transmission year-round, contrasting with the central highlands and desert south where trends appear more closely associated with epidemic outbreak events. Ecozones have shown steady increases in reported malaria cases since 2010, with a near doubling of raw reported case numbers from 2014 to 2015. Gauges of data completeness suggest that interpretation of raw reported case numbers will underestimate true caseload as only approximately 60-75 % of health facility data are reported to the central level each month. DISCUSSION: A sub-national perspective is essential when monitoring the epidemiology of malaria in Madagascar and assessing local control needs. A robust assessment of the status of malaria at a time when intervention coverage efforts are being scaled up provides a platform from which to guide intervention preparedness and assess change in future periods of transmission.

Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, Battle KE, Dalrymple U, Rozier J, Rao PC et al. 2016. Mapping Plasmodium falciparum Mortality in Africa between 1990 and 2015. N Engl J Med, 375 (25), pp. 2435-2445. | Show Abstract | Read more

BACKGROUND: Malaria control has not been routinely informed by the assessment of subnational variation in malaria deaths. We combined data from the Malaria Atlas Project and the Global Burden of Disease Study to estimate malaria mortality across sub-Saharan Africa on a grid of 5 km2 from 1990 through 2015. METHODS: We estimated malaria mortality using a spatiotemporal modeling framework of geolocated data (i.e., with known latitude and longitude) on the clinical incidence of malaria, coverage of antimalarial drug treatment, case fatality rate, and population distribution according to age. RESULTS: Across sub-Saharan Africa during the past 15 years, we estimated that there was an overall decrease of 57% (95% uncertainty interval, 46 to 65) in the rate of malaria deaths, from 12.5 (95% uncertainty interval, 8.3 to 17.0) per 10,000 population in 2000 to 5.4 (95% uncertainty interval, 3.4 to 7.9) in 2015. This led to an overall decrease of 37% (95% uncertainty interval, 36 to 39) in the number of malaria deaths annually, from 1,007,000 (95% uncertainty interval, 666,000 to 1,376,000) to 631,000 (95% uncertainty interval, 394,000 to 914,000). The share of malaria deaths among children younger than 5 years of age ranged from more than 80% at a rate of death of more than 25 per 10,000 to less than 40% at rates below 1 per 10,000. Areas with high malaria mortality (>10 per 10,000) and low coverage (<50%) of insecticide-treated bed nets and antimalarial drugs included much of Nigeria, Angola, and Cameroon and parts of the Central African Republic, Congo, Guinea, and Equatorial Guinea. CONCLUSIONS: We estimated that there was an overall decrease of 57% in the rate of death from malaria across sub-Saharan Africa over the past 15 years and identified several countries in which high rates of death were associated with low coverage of antimalarial treatment and prevention programs. (Funded by the Bill and Melinda Gates Foundation and others.).

GBD 2015 Risk Factors Collaborators. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1659-1724. | Show Abstract | Read more

BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. METHODS: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). FINDINGS: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. INTERPRETATION: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 Maternal Mortality Collaborators. 2016. Global, regional, and national levels of maternal mortality, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1775-1812. | Show Abstract | Read more

BACKGROUND: In transitioning from the Millennium Development Goal to the Sustainable Development Goal era, it is imperative to comprehensively assess progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions. We aimed to quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015. METHODS: We estimated maternal mortality at the global, regional, and national levels from 1990 to 2015 for ages 10-54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories, 11 of which were analysed at the subnational level. We quantified eight underlying causes of maternal death and four timing categories, improving estimation methods since GBD 2013 for adult all-cause mortality, HIV-related maternal mortality, and late maternal death. Secondary analyses then allowed systematic examination of drivers of trends, including the relation between maternal mortality and coverage of specific reproductive health-care services as well as assessment of observed versus expected maternal mortality as a function of Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. FINDINGS: Only ten countries achieved MDG 5, but 122 of 195 countries have already met SDG 3.1. Geographical disparities widened between 1990 and 2015 and, in 2015, 24 countries still had a maternal mortality ratio greater than 400. The proportion of all maternal deaths occurring in the bottom two SDI quintiles, where haemorrhage is the dominant cause of maternal death, increased from roughly 68% in 1990 to more than 80% in 2015. The middle SDI quintile improved the most from 1990 to 2015, but also has the most complicated causal profile. Maternal mortality in the highest SDI quintile is mostly due to other direct maternal disorders, indirect maternal disorders, and abortion, ectopic pregnancy, and/or miscarriage. Historical patterns suggest achievement of SDG 3.1 will require 91% coverage of one antenatal care visit, 78% of four antenatal care visits, 81% of in-facility delivery, and 87% of skilled birth attendance. INTERPRETATION: Several challenges to improving reproductive health lie ahead in the SDG era. Countries should establish or renew systems for collection and timely dissemination of health data; expand coverage and improve quality of family planning services, including access to contraception and safe abortion to address high adolescent fertility; invest in improving health system capacity, including coverage of routine reproductive health care and of more advanced obstetric care-including EmOC; adapt health systems and data collection systems to monitor and reverse the increase in indirect, other direct, and late maternal deaths, especially in high SDI locations; and examine their own performance with respect to their SDI level, using that information to formulate strategies to improve performance and ensure optimum reproductive health of their population. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 Mortality and Causes of Death Collaborators. 2016. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1459-1544. | Show Abstract | Read more

BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 DALYs and HALE Collaborators. 2016. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1603-1658. | Show Abstract | Read more

BACKGROUND: Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. FINDINGS: Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. INTERPRETATION: Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 Child Mortality Collaborators. 2016. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1725-1774. | Show Abstract | Read more

BACKGROUND: Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. METHODS: Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1-4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980-2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age-sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, 5·8 million (95% uncertainty interval [UI] 5·7-6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7-53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3-43·6) to 2·6 million (2·6-2·7) neonatal deaths and 47·0% (35·1-57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6-3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. INTERPRETATION: Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 SDG Collaborators. 2016. Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1813-1850. | Show Abstract | Read more

BACKGROUND: In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). METHODS: We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. FINDINGS: In 2015, the median health-related SDG index was 59·3 (95% uncertainty interval 56·8-61·8) and varied widely by country, ranging from 85·5 (84·2-86·5) in Iceland to 20·4 (15·4-24·9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r2=0·88) and the MDG index (r2=0·92), whereas the non-MDG index had a weaker relation with SDI (r2=0·79). Between 2000 and 2015, the health-related SDG index improved by a median of 7·9 (IQR 5·0-10·4), and gains on the MDG index (a median change of 10·0 [6·7-13·1]) exceeded that of the non-MDG index (a median change of 5·5 [2·1-8·9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. INTERPRETATION: GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs. FUNDING: Bill & Melinda Gates Foundation.

GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. 2016. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388 (10053), pp. 1545-1602. | Show Abstract | Read more

BACKGROUND: Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. METHODS: We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. FINDINGS: We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval [UI] 15·4-19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30-2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35-2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20-30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. INTERPRETATION: Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. FUNDING: Bill & Melinda Gates Foundation.

Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, Pigott DM, Brady OJ, Putaporntip C, Jongwutiwes S et al. 2016. Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLoS Negl Trop Dis, 10 (8), pp. e0004915. | Show Abstract | Read more

BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated. METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines). CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

Johansson EW, Selling KE, Nsona H, Mappin B, Gething PW, Petzold M, Peterson SS, Hildenwall H. 2016. Integrated paediatric fever management and antibiotic over-treatment in Malawi health facilities: data mining a national facility census. Malar J, 15 (1), pp. 396. | Show Abstract | Read more

BACKGROUND: There are growing concerns about irrational antibiotic prescription practices in the era of test-based malaria case management. This study assessed integrated paediatric fever management using malaria rapid diagnostic tests (RDT) and Integrated Management of Childhood Illness (IMCI) guidelines, including the relationship between RDT-negative results and antibiotic over-treatment in Malawi health facilities in 2013-2014. METHODS: A Malawi national facility census included 1981 observed sick children aged 2-59 months with fever complaints. Weighted frequencies were tabulated for other complaints, assessments and prescriptions for RDT-confirmed malaria, IMCI-classified non-severe pneumonia, and clinical diarrhoea. Classification trees using model-based recursive partitioning estimated the association between RDT results and antibiotic over-treatment and learned the influence of 38 other input variables at patient-, provider- and facility-levels. RESULTS: Among 1981 clients, 72 % were tested or referred for malaria diagnosis and 85 % with RDT-confirmed malaria were prescribed first-line anti-malarials. Twenty-eight percent with IMCI-pneumonia were not prescribed antibiotics (under-treatment) and 59 % 'without antibiotic need' were prescribed antibiotics (over-treatment). Few clients had respiratory rates counted to identify antibiotic need for IMCI-pneumonia (18 %). RDT-negative children had 16.8 (95 % CI 8.6-32.7) times higher antibiotic over-treatment odds compared to RDT-positive cases conditioned by cough or difficult breathing complaints. CONCLUSIONS: Integrated paediatric fever management was sub-optimal for completed assessments and antibiotic targeting despite common compliance to malaria treatment guidelines. RDT-negative results were strongly associated with antibiotic over-treatment conditioned by cough or difficult breathing complaints. A shift from malaria-focused 'test and treat' strategies toward 'IMCI with testing' is needed to improve quality fever care and rational use of both anti-malarials and antibiotics in line with recent global commitments to combat resistance.

GBD 2015 HIV Collaborators. 2016. Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015: the Global Burden of Disease Study 2015. Lancet HIV, 3 (8), pp. e361-e387. | Show Abstract | Read more

BACKGROUND: Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. METHODS: For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. FINDINGS: Global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1-3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5-2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6-40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7-1·9 million) in 2005, to 1·2 million deaths (1·1-1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. INTERPRETATION: Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. FUNDING: Bill & Melinda Gates Foundation, and National Institute of Mental Health and National Institute on Aging, National Institutes of Health.

Sturrock HJW, Bennett AF, Midekisa A, Gosling RD, Gething PW, Greenhouse B. 2016. Mapping Malaria Risk in Low Transmission Settings: Challenges and Opportunities. Trends Parasitol, 32 (8), pp. 635-645. | Show Abstract | Read more

As malaria transmission declines, it becomes increasingly focal and prone to outbreaks. Understanding and predicting patterns of transmission risk becomes an important component of an effective elimination campaign, allowing limited resources for control and elimination to be targeted cost-effectively. Malaria risk mapping in low transmission settings is associated with some unique challenges. This article reviews the main challenges and opportunities related to risk mapping in low transmission areas including recent advancements in risk mapping low transmission malaria, relevant metrics, and statistical approaches and risk mapping in post-elimination settings.

Pigott DM, Millear AI, Earl L, Morozoff C, Han BA, Shearer FM, Weiss DJ, Brady OJ, Kraemer MU, Moyes CL et al. 2016. Updates to the zoonotic niche map of Ebola virus disease in Africa. Elife, 5 (2016JULY), | Show Abstract | Read more

As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers.

Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI. 2016. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg, 95 (6 Suppl), pp. 15-34. | Show Abstract | Read more

Plasmodium vivax is the most widespread human malaria, putting 2.5 billion people at risk of infection. Its unique biological and epidemiological characteristics pose challenges to control strategies that have been principally targeted against Plasmodium falciparum Unlike P. falciparum, P. vivax infections have typically low blood-stage parasitemia with gametocytes emerging before illness manifests, and dormant liver stages causing relapses. These traits affect both its geographic distribution and transmission patterns. Asymptomatic infections, high-risk groups, and resulting case burdens are described in this review. Despite relatively low prevalence measurements and parasitemia levels, along with high proportions of asymptomatic cases, this parasite is not benign. Plasmodium vivax can be associated with severe and even fatal illness. Spreading resistance to chloroquine against the acute attack, and the operational inadequacy of primaquine against the multiple attacks of relapse, exacerbates the risk of poor outcomes among the tens of millions suffering from infection each year. Without strategies accounting for these P. vivax-specific characteristics, progress toward elimination of endemic malaria transmission will be substantially impeded.

Subnational Estimates Working Group of the HIV Modelling Consortium. 2016. Evaluation of geospatial methods to generate subnational HIV prevalence estimates for local level planning. AIDS, 30 (9), pp. 1467-1474. | Show Abstract | Read more

OBJECTIVE: There is evidence of substantial subnational variation in the HIV epidemic. However, robust spatial HIV data are often only available at high levels of geographic aggregation and not at the finer resolution needed for decision making. Therefore, spatial analysis methods that leverage available data to provide local estimates of HIV prevalence may be useful. Such methods exist but have not been formally compared when applied to HIV. DESIGN/METHODS: Six candidate methods - including those used by the Joint United Nations Programme on HIV/AIDS to generate maps and a Bayesian geostatistical approach applied to other diseases - were used to generate maps and subnational estimates of HIV prevalence across three countries using cluster level data from household surveys. Two approaches were used to assess the accuracy of predictions: internal validation, whereby a proportion of input data is held back (test dataset) to challenge predictions; and comparison with location-specific data from household surveys in earlier years. RESULTS: Each of the methods can generate usefully accurate predictions of prevalence at unsampled locations, with the magnitude of the error in predictions similar across approaches. However, the Bayesian geostatistical approach consistently gave marginally the strongest statistical performance across countries and validation procedures. CONCLUSIONS: Available methods may be able to furnish estimates of HIV prevalence at finer spatial scales than the data currently allow. The subnational variation revealed can be integrated into planning to ensure responsiveness to the spatial features of the epidemic. The Bayesian geostatistical approach is a promising strategy for integrating HIV data to generate robust local estimates.

Cited:

21

European Pubmed Central

WWARN Gametocyte Study Group. 2016. Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data. BMC Med, 14 (1), pp. 79. | Show Abstract | Read more

BACKGROUND: Gametocytes are responsible for transmission of malaria from human to mosquito. Artemisinin combination therapy (ACT) reduces post-treatment gametocyte carriage, dependent upon host, parasite and pharmacodynamic factors. The gametocytocidal properties of antimalarial drugs are important for malaria elimination efforts. An individual patient clinical data meta-analysis was undertaken to identify the determinants of gametocyte carriage and the comparative effects of four ACTs: artemether-lumefantrine (AL), artesunate/amodiaquine (AS-AQ), artesunate/mefloquine (AS-MQ), and dihydroartemisinin-piperaquine (DP). METHODS: Factors associated with gametocytaemia prior to, and following, ACT treatment were identified in multivariable logistic or Cox regression analysis with random effects. All relevant studies were identified through a systematic review of PubMed. Risk of bias was evaluated based on study design, methodology, and missing data. RESULTS: The systematic review identified 169 published and 9 unpublished studies, 126 of which were shared with the WorldWide Antimalarial Resistance Network (WWARN) and 121 trials including 48,840 patients were included in the analysis. Prevalence of gametocytaemia by microscopy at enrolment was 12.1 % (5887/48,589), and increased with decreasing age, decreasing asexual parasite density and decreasing haemoglobin concentration, and was higher in patients without fever at presentation. After ACT treatment, gametocytaemia appeared in 1.9 % (95 % CI, 1.7-2.1) of patients. The appearance of gametocytaemia was lowest after AS-MQ and AL and significantly higher after DP (adjusted hazard ratio (AHR), 2.03; 95 % CI, 1.24-3.12; P = 0.005 compared to AL) and AS-AQ fixed dose combination (FDC) (AHR, 4.01; 95 % CI, 2.40-6.72; P < 0.001 compared to AL). Among individuals who had gametocytaemia before treatment, gametocytaemia clearance was significantly faster with AS-MQ (AHR, 1.26; 95 % CI, 1.00-1.60; P = 0.054) and slower with DP (AHR, 0.74; 95 % CI, 0.63-0.88; P = 0.001) compared to AL. Both recrudescent (adjusted odds ratio (AOR), 9.05; 95 % CI, 3.74-21.90; P < 0.001) and new (AOR, 3.03; 95 % CI, 1.66-5.54; P < 0.001) infections with asexual-stage parasites were strongly associated with development of gametocytaemia after day 7. CONCLUSIONS: AS-MQ and AL are more effective than DP and AS-AQ FDC in preventing gametocytaemia shortly after treatment, suggesting that the non-artemisinin partner drug or the timing of artemisinin dosing are important determinants of post-treatment gametocyte dynamics.

Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, Johansson MA, Gething PW, Velayudhan R, Khan K et al. 2016. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill, 21 (20), pp. 7-18. | Show Abstract | Read more

Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted to humans by Aedes mosquitoes. Although chikungunya fever is rarely fatal, patients can experience debilitating symptoms that last from months to years. Here we comprehensively assess the global distribution of chikungunya and produce high-resolution maps, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps. This enables estimation of the current total population-at-risk of CHIKV transmission and identification of areas where the virus may spread to in the future. We identified 94 countries with good evidence for current CHIKV presence and a set of countries in the New and Old World with potential for future CHIKV establishment, demonstrated by high environmental suitability for transmission and in some cases previous sporadic reports. Aedes aegypti presence was identified as one of the major contributing factors to CHIKV transmission but significant geographical heterogeneity exists. We estimated 1.3 billion people are living in areas at-risk of CHIKV transmission. These maps provide a baseline for identifying areas where prevention and control efforts should be prioritised and can be used to guide estimation of the global burden of CHIKV.

Messina JP, Kraemer MU, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, Golding N, Ruktanonchai CW, Gething PW, Cohn E et al. 2016. Mapping global environmental suitability for Zika virus. Elife, 5 (APRIL2016), | Show Abstract | Read more

Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome observed in this outbreak have raised concerns about continued global spread of Zika virus, prompting its declaration as a Public Health Emergency of International Concern by the World Health Organization. We conducted species distribution modelling to map environmental suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas.

Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, Coetzee M, Simard F, Roch DK, Hinzoumbe CK et al. 2016. Averting a malaria disaster: will insecticide resistance derail malaria control? The Lancet, 387 (10029), pp. 1785-1788. | Read more

Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, Shutes E, Newman RD, Alonso P, Cibulskis RE, Ghani AC. 2016. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis, 16 (4), pp. 465-472. | Show Abstract | Read more

BACKGROUND: Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. METHODS: We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011-13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006-08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. FINDINGS: With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19-29) and a reduction in mortality rates of 40% (27-61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by 59% (Crl 56-64) and mortality rates by 74% (67-82); with additional near-term innovation, incidence was predicted to decline by 74% (70-77) and mortality rates by 81% (76-87). These scenarios were predicted to lead to local elimination in 13 countries under the Accelerate 1 scenario, 20 under Accelerate 2, and 22 under Innovate by 2030, reducing the proportion of the population living in at-risk areas by 36% if elimination is defined at the first administrative unit. However, failing to maintain coverage levels of 2011-13 is predicted to raise case incidence by 76% (Crl 71-80) and mortality rates by 46% (39-51) by 2020. INTERPRETATION: Our findings show that decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage of key interventions is increased. FUNDING: UK Medical Research Council, UK Department for International Development, the Bill & Melinda Gates Foundation, the Swiss Development Agency, and the US Agency for International Development.

Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, Perkins TA, Reiner RC, Tusting LS, Sinka ME et al. 2016. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg, 110 (2), pp. 107-117. | Show Abstract | Read more

BACKGROUND: Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. METHODS AND RESULTS: Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. CONCLUSIONS: Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions.

Battle KE, Bisanzio D, Gibson HS, Bhatt S, Cameron E, Weiss DJ, Mappin B, Dalrymple U, Howes RE, Hay SI, Gething PW. 2016. Treatment-seeking rates in malaria endemic countries. Malar J, 15 (1), pp. 20. | Show Abstract | Read more

BACKGROUND: The proportion of individuals who seek treatment for fever is an important quantity in understanding access to and use of health systems, as well as for interpreting data on disease incidence from routine surveillance systems. For many malaria endemic countries (MECs), treatment-seeking information is available from national household surveys. The aim of this paper was to assemble sub-national estimates of treatment-seeking behaviours and to predict national treatment-seeking measures for all MECs lacking household survey data. METHODS: Data on treatment seeking for fever were obtained from Demographic and Health Surveys, Malaria Indicator Surveys and Multiple Cluster Indicator Surveys for every MEC and year that data were available. National-level social, economic and health-related variables were gathered from the World Bank as putative covariates of treatment-seeking rates. A generalized additive mixed model (GAMM) was used to estimate treatment-seeking behaviours for countries where survey data were unavailable. Two separate models were developed to predict the proportion of fever cases that would seek treatment at (1) a public health facility or (2) from any kind of treatment provider. RESULTS: Treatment-seeking data were available for 74 MECs and modelled for the remaining 24. GAMMs found that the percentage of pregnant women receiving prenatal care, vaccination rates, education level, government health expenditure, and GDP growth were important predictors for both categories of treatment-seeking outcomes. Treatment-seeking rates, which varied both within and among regions, revealed that public facilities were not always the primary facility type used. CONCLUSIONS: Estimates of treatment-seeking rates show how health services are utilized and help correct reported malaria case numbers to obtain more accurate measures of disease burden. The assembled and modelled data demonstrated that while treatment-seeking rates have overall increased over time, access remains low in some malaria endemic regions and utilization of government services is in some areas limited.

Bhatt S, Weiss DJ, Mappin B, Dalrymple U, Cameron E, Bisanzio D, Smith DL, Moyes CL, Tatem AJ, Lynch M et al. 2015. Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017. Elife, 4 (DECEMBER2015), | Show Abstract | Read more

Insecticide-treated nets (ITNs) for malaria control are widespread but coverage remains inadequate. We developed a Bayesian model using data from 102 national surveys, triangulated against delivery data and distribution reports, to generate year-by-year estimates of four ITN coverage indicators. We explored the impact of two potential 'inefficiencies': uneven net distribution among households and rapid rates of net loss from households. We estimated that, in 2013, 21% (17%-26%) of ITNs were over-allocated and this has worsened over time as overall net provision has increased. We estimated that rates of ITN loss from households are more rapid than previously thought, with 50% lost after 23 (20-28) months. We predict that the current estimate of 920 million additional ITNs required to achieve universal coverage would in reality yield a lower level of coverage (77% population access). By improving efficiency, however, the 920 million ITNs could yield population access as high as 95%.

Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, Gething PW. 2015. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar J, 14 (1), pp. 574. | Show Abstract | Read more

BACKGROUND: Malaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation. The construction of these maps using modern geospatial techniques relies on covariate grids: continuous surfaces quantifying environmental factors that partially explain spatial heterogeneity in malaria endemicity. Although crucial, past variable selection processes for this purpose have often been subjective and ad-hoc, with many covariates used in modeling with little quantitative justification. METHODS: This research consists of an extensive covariate construction and selection process for predicting Plasmodium falciparum parasite rates (PfPR) in Africa for years 2000-2012. First, a literature review was conducted to establish a comprehensive list of covariates used for malaria mapping. Second, a library of covariate data was assembled to reflect this list, a process that included the construction of multiple, temporally dynamic datasets. Third, the resulting set of covariates was leveraged to create more than 50 million possible covariate terms via factorial combinations of different spatial and temporal aggregations, transformations, and pairwise interactions. Fourth, the expanded set of covariates was reduced via successive selection criteria to yield a robust covariate subset that was assessed using an out-of-sample validation approach. RESULTS: The final covariate subset included predominately dynamic covariates and it substantially out-performed earlier sets used by the Malaria Atlas Project (MAP) for creating global malaria risk maps, with the pseudo-R(2) value for the out-of-sample validation increasing from 0.43 to 0.52. Dynamic covariates improved the model, with 17 of the 20 new covariates consisting of monthly or annual products, but the selected covariates were typically interaction terms that included both dynamic and synoptic datasets. Thus the interplay between normal (i.e., long-term averages) and immediate conditions may be key for characterizing environmental controls on parasite rate. CONCLUSIONS: This analysis represents the first effort to systematically audit covariate utility for malaria mapping and then derive an objective, empirically based set of environmental covariates for modeling PfPR. The new covariates produce more reliable representations of malaria risk patterns and how they are changing through time, and these covariates will be used to characterize spatially and temporally varying environmental conditions affecting PfPR within a geostatistical-modeling framework, thus building upon previous research by MAP that produced global malaria maps for 2007 and 2010.

Vivax Working Group. 2015. Targeting vivax malaria in the Asia Pacific: The Asia Pacific Malaria Elimination Network Vivax Working Group. Malar J, 14 (1), pp. 484. | Show Abstract | Read more

The Asia Pacific Malaria Elimination Network (APMEN) is a collaboration of 18 country partners committed to eliminating malaria from within their borders. Over the past 5 years, APMEN has helped to build the knowledge, tools and in-country technical expertise required to attain this goal. At its inaugural meeting in Brisbane in 2009, Plasmodium vivax infections were identified across the region as a common threat to this ambitious programme; the APMEN Vivax Working Group was established to tackle specifically this issue. The Working Group developed a four-stage strategy to identify knowledge gaps, build regional consensus on shared priorities, generate evidence and change practice to optimize malaria elimination activities. This case study describes the issues faced and the solutions found in developing this robust strategic partnership between national programmes and research partners within the Working Group. The success of the approach adopted by the group may facilitate similar applications in other regions seeking to deploy evidence-based policy and practice.

Howes RE, Reiner RC, Battle KE, Longbottom J, Mappin B, Ordanovich D, Tatem AJ, Drakeley C, Gething PW, Zimmerman PA et al. 2015. Plasmodium vivax Transmission in Africa. PLoS Negl Trop Dis, 9 (11), pp. e0004222. | Show Abstract | Read more

Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well as the other neglected non-Pf parasites, which are currently invisible to most public health authorities in Africa, but which can cause severe clinical illness and require specific control interventions.

Mappin B, Cameron E, Dalrymple U, Weiss DJ, Bisanzio D, Bhatt S, Gething PW. 2015. Standardizing Plasmodium falciparum infection prevalence measured via microscopy versus rapid diagnostic test. Malar J, 14 (1), pp. 460. | Show Abstract | Read more

BACKGROUND: Large-scale mapping of Plasmodium falciparum infection prevalence relies on opportunistic assemblies of infection prevalence data arising from thousands of P. falciparum parasite rate (PfPR) surveys conducted worldwide. Variance in these data is driven by both signal, the true underlying pattern of infection prevalence, and a range of factors contributing to 'noise', including sampling error, differing age ranges of subjects and differing parasite detection methods. Whilst the former two noise components have been addressed in previous studies, the effect of different diagnostic methods used to determine PfPR in different studies has not. In particular, the majority of PfPR data are based on positivity rates determined by either microscopy or rapid diagnostic test (RDT), yet these approaches are not equivalent; therefore a method is needed for standardizing RDT and microscopy-based prevalence estimates prior to use in mapping. METHODS: Twenty-five recent Demographic and Health surveys (DHS) datasets from sub-Saharan Africa provide child diagnostic test results derived using both RDT and microscopy for each individual. These prevalence estimates were aggregated across level one administrative zones and a Bayesian probit regression model fit to the microscopy- versus RDT-derived prevalence relationship. An errors-in-variables approach was employed to account for sampling error in both the dependent and independent variables. In addition to the diagnostic outcome, RDT type, fever status and recent anti-malarial treatment were extracted from the datasets in order to analyse their effect on observed malaria prevalence. RESULTS: A strong non-linear relationship between the microscopy and RDT-derived prevalence was found. The results of regressions stratified by the additional diagnostic variables (RDT type, fever status and recent anti-malarial treatment) indicate that there is a distinct and consistent difference in the relationship when the data are stratified by febrile status and RDT brand. CONCLUSIONS: The relationships defined in this research can be applied to RDT-derived PfPR data to effectively convert them to an estimate of the parasite prevalence expected using microscopy (or vice versa), thereby standardizing the dataset and improving the signal-to-noise ratio. Additionally, the results provide insight on the importance of RDT brands, febrile status and recent anti-malarial treatment for explaining inconsistencies between observed prevalence derived from different diagnostics.

Penny MA, Maire N, Bever CA, Pemberton-Ross P, Briët OJT, Smith DL, Gething PW, Smith TA. 2015. Distribution of malaria exposure in endemic countries in Africa considering country levels of effective treatment. Malar J, 14 (1), pp. 384. | Show Abstract | Read more

BACKGROUND: Malaria prevalence, clinical incidence, treatment, and transmission rates are dynamically interrelated. Prevalence is often considered a measure of malaria transmission, but treatment of clinical malaria reduces prevalence, and consequently also infectiousness to the mosquito vector and onward transmission. The impact of the frequency of treatment on prevalence in a population is generally not considered. This can lead to potential underestimation of malaria exposure in settings with good health systems. Furthermore, these dynamical relationships between prevalence, treatment, and transmission have not generally been taken into account in estimates of burden. METHODS: Using prevalence as an input, estimates of disease incidence and transmission [as the distribution of the entomological inoculation rate (EIR)] for Plasmodium falciparum have now been made for 43 countries in Africa using both empirical relationships (that do not allow for treatment) and OpenMalaria dynamic micro-simulation models (that explicitly include the effects of treatment). For each estimate, prevalence inputs were taken from geo-statistical models fitted for the year 2010 by the Malaria Atlas Project to all available observed prevalence data. National level estimates of the effectiveness of case management in treating clinical attacks were used as inputs to the estimation of both EIR and disease incidence by the dynamic models. RESULTS AND CONCLUSIONS: When coverage of effective treatment is taken into account, higher country level estimates of average EIR and thus higher disease burden, are obtained for a given prevalence level, especially where access to treatment is high, and prevalence relatively low. These methods provide a unified framework for comparison of both the immediate and longer-term impacts of case management and of preventive interventions.

Weiss DJ, Gibson H, Hancher MD, Lieber A, Gething PW. 2015. GEOSPATIAL COVARIATES AVAILABLE IN GOOGLE EARTH ENGINE FOR DISEASE MODELING AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 93 (4), pp. 211-211.

Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Mappin B, Bisanzio D, Gething PW. 2015. ESTIMATING THE PROPORTION THE DISTRIBUTION OF PLASMODIUM FALCIPARUM MALARIA-ATTRIBUTABLE FEVERS THE ASYMPTOMATIC INFECTION IN AFRICA AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 93 (4), pp. 91-91.

Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA et al. 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526 (7572), pp. 207-211. | Show Abstract | Read more

Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.

Reiner RC, Geary M, Atkinson PM, Smith DL, Gething PW. 2015. Seasonality of Plasmodium falciparum transmission: a systematic review. Malar J, 14 (1), pp. 343. | Show Abstract | Read more

BACKGROUND: Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has "strongly seasonal" transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. METHODS: The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. RESULTS AND DISCUSSION: 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). DISCUSSION: Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. CONCLUSIONS: The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales.

Cameron E, Battle KE, Bhatt S, Weiss DJ, Bisanzio D, Mappin B, Dalrymple U, Hay SI, Smith DL, Griffin JT et al. 2015. Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun, 6 (1), pp. 8170. | Show Abstract | Read more

In many countries health system data remain too weak to accurately enumerate Plasmodium falciparum malaria cases. In response, cartographic approaches have been developed that link maps of infection prevalence with mathematical relationships to predict the incidence rate of clinical malaria. Microsimulation (or 'agent-based') models represent a powerful new paradigm for defining such relationships; however, differences in model structure and calibration data mean that no consensus yet exists on the optimal form for use in disease-burden estimation. Here we develop a Bayesian statistical procedure combining functional regression-based model emulation with Markov Chain Monte Carlo sampling to calibrate three selected microsimulation models against a purpose-built data set of age-structured prevalence and incidence counts. This allows the generation of ensemble forecasts of the prevalence-incidence relationship stratified by age, transmission seasonality, treatment level and exposure history, from which we predict accelerating returns on investments in large-scale intervention campaigns as transmission and prevalence are progressively reduced.

WWARN Artemisinin based Combination Therapy (ACT) Africa Baseline Study Group, Dahal P, d'Alessandro U, Dorsey G, Guerin PJ, Nsanzabana C, Price RN, Sibley CH, Stepniewska K, Talisuna AO. 2015. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med, 13 (1), pp. 212. | Show Abstract | Read more

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). METHODS: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. RESULTS: In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine (n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5-64.9) on day 1 to 6.7 % (95 % CI: 4.8-8.7) on day 2 and 0.9 % (95 % CI: 0.5-1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %. Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16 (95 % CI: 1.08-1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 °C) (AOR = 1.50 (95 % CI: 1.06-2.13), P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21-3.44), P = 0.008); areas of low/moderate transmission setting (AOR = 2.71 (95 % CI: 1.38-5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine (AOR = 2.27 (95 % CI: 1.14-4.51), P = 0.020, compared to dihydroartemisinin-piperaquine). CONCLUSIONS: The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50 patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold of 10 % to trigger further investigation of artemisinin susceptibility.

Battle KE, Guerra CA, Golding N, Duda KA, Cameron E, Howes RE, Elyazar IRF, Baird JK, Reiner RC, Gething PW et al. 2015. Global database of matched Plasmodium falciparum and P. vivax incidence and prevalence records from 1985-2013. Sci Data, 2 pp. 150012. | Show Abstract | Read more

Measures of clinical incidence are necessary to help estimate the burden of a disease. Incidence is a metric not commonly measured in malariology because the longitudinal surveys required are costly and labour intensive. This database is an effort to collate published incidence records obtained using active case detection for Plasmodium falciparum and Plasmodium vivax malaria. The literature search methods, data abstraction procedures and data processing procedures are described here. A total of 1,680 spatio-temporally unique incidence records were collected for the database: 1,187 for P. falciparum and 493 for P. vivax. These data were gathered to model the relationship between clinical incidence and prevalence of infection and can be used for a variety of modelling exercises including the assessment of change in disease burden in relation to age and control interventions. The subset of data that have been used for such modelling exercises are described and identified.

Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, Gibson H, Robinson TP, Gilbert M, William Wint GR et al. 2015. The global distribution of Crimean-Congo hemorrhagic fever. Trans R Soc Trop Med Hyg, 109 (8), pp. 503-513. | Show Abstract | Read more

BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne infection caused by a virus (CCHFV) from the Bunyaviridae family. Domestic and wild vertebrates are asymptomatic reservoirs for the virus, putting animal handlers, slaughter-house workers and agricultural labourers at highest risk in endemic areas, with secondary transmission possible through contact with infected blood and other bodily fluids. Human infection is characterized by severe symptoms that often result in death. While it is known that CCHFV transmission is limited to Africa, Asia and Europe, definitive global extents and risk patterns within these limits have not been well described. METHODS: We used an exhaustive database of human CCHF occurrence records and a niche modeling framework to map the global distribution of risk for human CCHF occurrence. RESULTS: A greater proportion of shrub or grass land cover was the most important contributor to our model, which predicts highest levels of risk around the Black Sea, Turkey, and some parts of central Asia. Sub-Saharan Africa shows more focalized areas of risk throughout the Sahel and the Cape region. CONCLUSIONS: These new risk maps provide a valuable starting point for understanding the zoonotic niche of CCHF, its extent and the risk it poses to humans.

Pigott DM, Howes RE, Wiebe A, Battle KE, Golding N, Gething PW, Dowell SF, Farag TH, Garcia AJ, Kimball AM et al. 2015. Prioritising Infectious Disease Mapping. PLoS Negl Trop Dis, 9 (6), pp. e0003756. | Show Abstract | Read more

BACKGROUND: Increasing volumes of data and computational capacity afford unprecedented opportunities to scale up infectious disease (ID) mapping for public health uses. Whilst a large number of IDs show global spatial variation, comprehensive knowledge of these geographic patterns is poor. Here we use an objective method to prioritise mapping efforts to begin to address the large deficit in global disease maps currently available. METHODOLOGY/PRINCIPAL FINDINGS: Automation of ID mapping requires bespoke methodological adjustments tailored to the epidemiological characteristics of different types of diseases. Diseases were therefore grouped into 33 clusters based upon taxonomic divisions and shared epidemiological characteristics. Disability-adjusted life years, derived from the Global Burden of Disease 2013 study, were used as a globally consistent metric of disease burden. A review of global health stakeholders, existing literature and national health priorities was undertaken to assess relative interest in the diseases. The clusters were ranked by combining both metrics, which identified 44 diseases of main concern within 15 principle clusters. Whilst malaria, HIV and tuberculosis were the highest priority due to their considerable burden, the high priority clusters were dominated by neglected tropical diseases and vector-borne parasites. CONCLUSIONS/SIGNIFICANCE: A quantitative, easily-updated and flexible framework for prioritising diseases is presented here. The study identifies a possible future strategy for those diseases where significant knowledge gaps remain, as well as recognising those where global mapping programs have already made significant progress. For many conditions, potential shared epidemiological information has yet to be exploited.

Worldwide Antimalarial Resistance Network (WWARN) AL Dose Impact Study Group. 2015. The effect of dose on the antimalarial efficacy of artemether-lumefantrine: a systematic review and pooled analysis of individual patient data. Lancet Infect Dis, 15 (6), pp. 692-702. | Show Abstract | Read more

BACKGROUND: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS: We included 61 studies done between January, 1998, and December, 2012, and included 14,327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING: Bill & Melinda Gates Foundation.

Johansson EW, Gething PW, Hildenwall H, Mappin B, Petzold M, Peterson SS, Selling KE. 2015. Effect of diagnostic testing on medicines used by febrile children less than five years in 12 malaria-endemic African countries: A mixed-methods study Malaria Journal, | Show Abstract | Read more

© 2015 Johansson et al.; licensee BioMed Central.Background: In 2010, WHO revised guidelines to recommend testing all suspected malaria cases prior to treatment. Yet, evidence to assess programmes is largely derived from limited facility settings in a limited number of countries. National surveys from 12 sub-Saharan African countries were used to examine the effect of diagnostic testing on medicines used by febrile children under five years at the population level, including stratification by malaria risk, transmission season, source of care, symptoms, and age. Methods: Data were compiled from 12 Demographic and Health Surveys in 2010-2012 that reported fever prevalence, diagnostic test and medicine use, and socio-economic covariates (n = 16,323 febrile under-fives taken to care). Mixed-effects logistic regression models quantified the influence of diagnostic testing on three outcomes (artemisinin combination therapy (ACT), any anti-malarial or any antibiotic use) after adjusting for data clustering and confounding covariates. For each outcome, interactions between diagnostic testing and the following covariates were separately tested: malaria risk, season, source of care, symptoms, and age. A multiple case study design was used to understand varying results across selected countries and sub-national groups, which drew on programme documents, published research and expert consultations. A descriptive typology of plausible explanations for quantitative results was derived from a cross-case synthesis. Results: Significant variability was found in the effect of diagnostic testing on ACT use across countries (e.g., Uganda OR: 0.84, 95% CI: 0.66-1.06; Mozambique OR: 3.54, 95% CI: 2.33-5.39). Four main themes emerged to explain results: available diagnostics and medicines; quality of care; care-seeking behaviour; and, malaria epidemiology. Conclusions: Significant country variation was found in the effect of diagnostic testing on paediatric fever treatment at the population level, and qualitative results suggest the impact of diagnostic scale-up on treatment practices may not be straightforward in routine conditions given contextual factors (e.g., access to care, treatment-seeking behaviour or supply stock-outs). Despite limitations, quantitative results could help identify countries (e.g., Mozambique) or issues (e.g., malaria risk) where facility-based research or programme attention may be warranted. The mixed-methods approach triangulates different evidence to potentially provide a standard framework to assess routine programmes across countries or over time to fill critical evidence gaps.

Battle KE, Cameron E, Guerra CA, Golding N, Duda KA, Howes RE, Elyazar IRF, Price RN, Baird JK, Reiner RC et al. 2015. Defining the relationship between Plasmodium vivax parasite rate and clinical disease. Malar J, 14 (1), pp. 191. | Show Abstract | Read more

BACKGROUND: Though essential to the development and evaluation of national malaria control programmes, precise enumeration of the clinical illness burden of malaria in endemic countries remains challenging where local surveillance systems are incomplete. Strategies to infer annual incidence rates from parasite prevalence survey compilations have proven effective in the specific case of Plasmodium falciparum, but have yet to be developed for Plasmodium vivax. Moreover, defining the relationship between P. vivax prevalence and clinical incidence may also allow levels of endemicity to be inferred for areas where the information balance is reversed, that is, incident case numbers are more widely gathered than parasite surveys; both applications ultimately facilitating cartographic estimates of P. vivax transmission intensity and its ensuring disease burden. METHODS: A search for active case detection surveys was conducted and the recorded incidence values were matched to local, contemporary parasite rate measures and classified to geographic zones of differing relapse phenotypes. A hierarchical Bayesian model was fitted to these data to quantify the relationship between prevalence and incidence while accounting for variation among relapse zones. RESULTS: The model, fitted with 176 concurrently measured P. vivax incidence and prevalence records, was a linear regression of the logarithm of incidence against the logarithm of age-standardized prevalence. Specific relationships for the six relapse zones where data were available were drawn, as well as a pooled overall relationship. The slope of the curves varied among relapse zones; zones with short predicted time to relapse had steeper slopes than those observed to contain long-latency relapse phenotypes. CONCLUSIONS: The fitted relationships, along with appropriate uncertainty metrics, allow for estimates of clinical incidence of known confidence to be made from wherever P. vivax prevalence data are available. This is a prerequisite for cartographic-based inferences about the global burden of morbidity due to P. vivax, which will be used to inform control efforts.

WorldWide Antimalarial Resistance Network (WWARN) AS-AQ Study Group, Adjuik MA, Allan R, Anvikar AR, Ashley EA, Ba MS, Barennes H, Barnes KI, Bassat Q, Baudin E et al. 2015. The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria: a meta-analysis of individual patient data. BMC Med, 13 (1), pp. 66. | Show Abstract | Read more

BACKGROUND: Artesunate-amodiaquine (AS-AQ) is one of the most widely used artemisinin-based combination therapies (ACTs) to treat uncomplicated Plasmodium falciparum malaria in Africa. We investigated the impact of different dosing strategies on the efficacy of this combination for the treatment of falciparum malaria. METHODS: Individual patient data from AS-AQ clinical trials were pooled using the WorldWide Antimalarial Resistance Network (WWARN) standardised methodology. Risk factors for treatment failure were identified using a Cox regression model with shared frailty across study sites. RESULTS: Forty-three studies representing 9,106 treatments from 1999-2012 were included in the analysis; 4,138 (45.4%) treatments were with a fixed dose combination with an AQ target dose of 30 mg/kg (FDC), 1,293 (14.2%) with a non-fixed dose combination with an AQ target dose of 25 mg/kg (loose NFDC-25), 2,418 (26.6%) with a non-fixed dose combination with an AQ target dose of 30 mg/kg (loose NFDC-30), and the remaining 1,257 (13.8%) with a co-blistered non-fixed dose combination with an AQ target dose of 30 mg/kg (co-blistered NFDC). The median dose of AQ administered was 32.1 mg/kg [IQR: 25.9-38.2], the highest dose being administered to patients treated with co-blistered NFDC (median = 35.3 mg/kg [IQR: 30.6-43.7]) and the lowest to those treated with loose NFDC-25 (median = 25.0 mg/kg [IQR: 22.7-25.0]). Patients treated with FDC received a median dose of 32.4 mg/kg [IQR: 27-39.0]. After adjusting for reinfections, the corrected antimalarial efficacy on day 28 after treatment was similar for co-blistered NFDC (97.9% [95% confidence interval (CI): 97.0-98.8%]) and FDC (98.1% [95% CI: 97.6%-98.5%]; P = 0.799), but significantly lower for the loose NFDC-25 (93.4% [95% CI: 91.9%-94.9%]), and loose NFDC-30 (95.0% [95% CI: 94.1%-95.9%]) (P < 0.001 for all comparisons). After controlling for age, AQ dose, baseline parasitemia and region; treatment with loose NFDC-25 was associated with a 3.5-fold greater risk of recrudescence by day 28 (adjusted hazard ratio, AHR = 3.51 [95% CI: 2.02-6.12], P < 0.001) compared to FDC, and treatment with loose NFDC-30 was associated with a higher risk of recrudescence at only three sites. CONCLUSIONS: There was substantial variation in the total dose of amodiaquine administered in different AS-AQ combination regimens. Fixed dose AS-AQ combinations ensure optimal dosing and provide higher antimalarial treatment efficacy than the loose individual tablets in all age categories.

Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, Alex Perkins T, Reiner RC, Tusting LS, Scott TW et al. 2015. Adult vector control, mosquito ecology and malaria transmission. Int Health, 7 (2), pp. 121-129. | Show Abstract | Read more

BACKGROUND: Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. METHODS: In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. RESULTS: We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. CONCLUSIONS: These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission.

Cited:

25

European Pubmed Central

Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, Gething PW. 2015. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar J, 14 pp. 68. | Show Abstract | Read more

BACKGROUND: Malaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation. The construction of these maps using modern geospatial techniques relies on covariate grids: continuous surfaces quantifying environmental factors that partially explain spatial heterogeneity in malaria endemicity. Although crucial, past variable selection processes for this purpose have often been subjective and ad-hoc, with many covariates used in modeling with little quantitative justification. METHODS: This research consists of an extensive covariate construction and selection process for predicting Plasmodium falciparum parasite rates (PfPR) in Africa for years 2000-2012. First, a literature review was conducted to establish a comprehensive list of covariates used for malaria mapping. Second, a library of covariate data was assembled to reflect this list, a process that included the construction of multiple, temporally dynamic datasets. Third, the resulting set of covariates was leveraged to create more than 50 million possible covariate terms via factorial combinations of different spatial and temporal aggregations, transformations, and pairwise interactions. Fourth, the expanded set of covariates was reduced via successive selection criteria to yield a robust covariate subset that was assessed using an out-of-sample validation approach. RESULTS: The final covariate subset included predominately dynamic covariates and it substantially out-performed earlier sets used by the Malaria Atlas Project (MAP) for creating global malaria risk maps, with the pseudo-R(2) value for the out-of-sample validation increasing from 0.43 to 0.52. Dynamic covariates improved the model, with 17 of the 20 new covariates consisting of monthly or annual products, but the selected covariates were typically interaction terms that included both dynamic and synoptic datasets. Thus the interplay between normal (i.e., long-term averages) and immediate conditions may be key for characterizing environmental controls on parasite rate. CONCLUSIONS: This analysis represents the first effort to systematically audit covariate utility for malaria mapping and then derive an objective, empirically based set of environmental covariates for modeling PfPR. The new covariates produce more reliable representations of malaria risk patterns and how they are changing through time, and these covariates will be used to characterize spatially and temporally varying environmental conditions affecting PfPR within a geostatistical-modeling framework, thus building upon previous research by MAP that produced global malaria maps for 2007 and 2010.

Johansson EW, Gething PW, Hildenwall H, Mappin B, Petzold M, Peterson SS, Selling KE. 2015. Effect of diagnostic testing on medicines used by febrile children less than five years in 12 malaria-endemic African countries: a mixed-methods study. Malar J, 14 (1), pp. 194. | Show Abstract | Read more

BACKGROUND: In 2010, WHO revised guidelines to recommend testing all suspected malaria cases prior to treatment. Yet, evidence to assess programmes is largely derived from limited facility settings in a limited number of countries. National surveys from 12 sub-Saharan African countries were used to examine the effect of diagnostic testing on medicines used by febrile children under five years at the population level, including stratification by malaria risk, transmission season, source of care, symptoms, and age. METHODS: Data were compiled from 12 Demographic and Health Surveys in 2010-2012 that reported fever prevalence, diagnostic test and medicine use, and socio-economic covariates (n=16,323 febrile under-fives taken to care). Mixed-effects logistic regression models quantified the influence of diagnostic testing on three outcomes (artemisinin combination therapy (ACT), any anti-malarial or any antibiotic use) after adjusting for data clustering and confounding covariates. For each outcome, interactions between diagnostic testing and the following covariates were separately tested: malaria risk, season, source of care, symptoms, and age. A multiple case study design was used to understand varying results across selected countries and sub-national groups, which drew on programme documents, published research and expert consultations. A descriptive typology of plausible explanations for quantitative results was derived from a cross-case synthesis. RESULTS: Significant variability was found in the effect of diagnostic testing on ACT use across countries (e.g., Uganda OR: 0.84, 95% CI: 0.66-1.06; Mozambique OR: 3.54, 95% CI: 2.33-5.39). Four main themes emerged to explain results: available diagnostics and medicines; quality of care; care-seeking behaviour; and, malaria epidemiology. CONCLUSIONS: Significant country variation was found in the effect of diagnostic testing on paediatric fever treatment at the population level, and qualitative results suggest the impact of diagnostic scale-up on treatment practices may not be straightforward in routine conditions given contextual factors (e.g., access to care, treatment-seeking behaviour or supply stock-outs). Despite limitations, quantitative results could help identify countries (e.g., Mozambique) or issues (e.g., malaria risk) where facility-based research or programme attention may be warranted. The mixed-methods approach triangulates different evidence to potentially provide a standard framework to assess routine programmes across countries or over time to fill critical evidence gaps.

Johnson FA, Frempong-Ainguah F, Matthews Z, Harfoot AJP, Nyarko P, Baschieri A, Gething PW, Falkingham J, Atkinson PM. 2015. Evaluating the impact of the community-based health planning and services initiative on uptake of skilled birth care in Ghana. PLoS One, 10 (3), pp. e0120556. | Show Abstract | Read more

BACKGROUND: The Community-based Health Planning and Services (CHPS) initiative is a major government policy to improve maternal and child health and accelerate progress in the reduction of maternal mortality in Ghana. However, strategic intelligence on the impact of the initiative is lacking, given the persistant problems of patchy geographical access to care for rural women. This study investigates the impact of proximity to CHPS on facilitating uptake of skilled birth care in rural areas. METHODS AND FINDINGS: Data from the 2003 and 2008 Demographic and Health Survey, on 4,349 births from 463 rural communities were linked to georeferenced data on health facilities, CHPS and topographic data on national road-networks. Distance to nearest health facility and CHPS was computed using the closest facility functionality in ArcGIS 10.1. Multilevel logistic regression was used to examine the effect of proximity to health facilities and CHPS on use of skilled care at birth, adjusting for relevant predictors and clustering within communities. The results show that a substantial proportion of births continue to occur in communities more than 8 km from both health facilities and CHPS. Increases in uptake of skilled birth care are more pronounced where both health facilities and CHPS compounds are within 8 km, but not in communities within 8 km of CHPS but lack access to health facilities. Where both health facilities and CHPS are within 8 km, the odds of skilled birth care is 16% higher than where there is only a health facility within 8km. CONCLUSION: Where CHPS compounds are set up near health facilities, there is improved access to care, demonstrating the facilitatory role of CHPS in stimulating access to better care at birth, in areas where health facilities are accessible.

Dalrymple U, Mappin B, Gething PW. 2015. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. BMC Med, 13 (1), pp. 140. | Show Abstract | Read more

The mapping of malaria risk has a history stretching back over 100 years. The last decade, however, has seen dramatic progress in the scope, rigour and sophistication of malaria mapping such that its global distribution is now probably better understood than any other infectious disease. In this minireview we consider the main factors that have facilitated the recent proliferation of malaria risk mapping efforts and describe the most prominent global-scale endemicity mapping endeavours of recent years. We describe the diversification of malaria mapping to span a wide range of related metrics of biological and public health importance and consider prospects for the future of the science including its key role in supporting elimination efforts.

Reiner RC, Smith DL, Gething PW. 2015. Climate change, urbanization and disease: summer in the city…. Trans R Soc Trop Med Hyg, 109 (3), pp. 171-172. | Show Abstract | Read more

Climate change and urbanization can alter the burden of human diseases. The tropics, a region that includes the poorest populations and highest disease burdens, are expected to get slightly hotter and substantially more urban. Studies have projected changing burdens under different climate or urbanization scenarios, but it remains unclear what will happen if both happen at once. Interactions could amplify disease burdens, improve health overall, or shift burdens around. Social planners need better data on contemporary seasonal disease incidence patterns across the spectrum of climate, urbanicity and socio-economic status. How climate change, urbanization and health interact must be understood to adequately plan for the future.

Weiss DJ, Atkinson PM, Bhatt S, Mappin B, Hay SI, Gething PW. 2014. An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS J Photogramm Remote Sens, 98 pp. 106-118. | Show Abstract | Read more

The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000-2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets.

Upton LM, Brock PM, Churcher TS, Ghani AC, Gething PW, Delves MJ, Sala KA, Leroy D, Sinden RE, Blagborough AM. 2015. Lead clinical and preclinical antimalarial drugs can significantly reduce sporozoite transmission to vertebrate populations. Antimicrob Agents Chemother, 59 (1), pp. 490-497. | Show Abstract | Read more

To achieve malarial elimination, we must employ interventions that reduce the exposure of human populations to infectious mosquitoes. To this end, numerous antimalarial drugs are under assessment in a variety of transmission-blocking assays which fail to measure the single crucial criteria of a successful intervention, namely impact on case incidence within a vertebrate population (reduction in reproductive number/effect size). Consequently, any reduction in new infections due to drug treatment (and how this may be influenced by differing transmission settings) is not currently examined, limiting the translation of any findings. We describe the use of a laboratory population model to assess how individual antimalarial drugs can impact the number of secondary Plasmodium berghei infections over a cycle of transmission. We examine the impact of multiple clinical and preclinical drugs on both insect and vertebrate populations at multiple transmission settings. Both primaquine (>6 mg/kg of body weight) and NITD609 (8.1 mg/kg) have significant impacts across multiple transmission settings, but artemether and lumefantrine (57 and 11.8 mg/kg), OZ439 (6.5 mg/kg), and primaquine (<1.25 mg/kg) demonstrated potent efficacy only at lower-transmission settings. While directly demonstrating the impact of antimalarial drug treatment on vertebrate populations, we additionally calculate effect size for each treatment, allowing for head-to-head comparison of the potential impact of individual drugs within epidemiologically relevant settings, supporting their usage within elimination campaigns.

Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, Brady OJ, Kraemer MUG, Smith DL, Moyes CL et al. 2014. Mapping the zoonotic niche of Ebola virus disease in Africa. Elife, 3 pp. e04395. | Show Abstract | Read more

Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976-2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past.

Pinsent A, Read JM, Griffin JT, Smith V, Gething PW, Ghani AC, Pasvol G, Hollingsworth TD. 2014. Risk factors for UK Plasmodium falciparum cases. Malar J, 13 (1), pp. 298. | Show Abstract | Read more

BACKGROUND: An increasing proportion of malaria cases diagnosed in UK residents with a history of travel to malaria endemic areas are due to Plasmodium falciparum. METHODS: In order to identify travellers at most risk of acquiring malaria a proportional hazards model was used to estimate the risk of acquiring malaria stratified by purpose of travel and age whilst adjusting for entomological inoculation rate (EIR) and duration of stay in endemic countries. RESULTS: Travellers visiting friends and relatives and business travellers were found to have significantly higher hazard of acquiring malaria (adjusted hazard ratio (HR) relative to that of holiday makers 7.4, 95% CI 6.4-8.5, p < 0. 0001 and HR 3.4, 95% CI 2.9-3.8, p < 0. 0001, respectively). All age-groups were at lower risk than children aged 0-15 years. CONCLUSIONS: These estimates of the increased risk for business travellers and those visiting friends and relatives should be used to inform programmes to improve awareness of the risks of malaria when travelling.

Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JP, Reiner RC, Scott TW, Smith DL, Gething PW, Hay SI. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors, 7 (1), pp. 338. | Show Abstract | Read more

BACKGROUND: Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. METHODS: Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. RESULTS: Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. CONCLUSIONS: These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation.

Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, Messina JP, Balard Y, Bastien P, Pratlong F et al. 2014. Global distribution maps of the leishmaniases. Elife, 3 | Show Abstract | Read more

The leishmaniases are vector-borne diseases that have a broad global distribution throughout much of the Americas, Africa, and Asia. Despite representing a significant public health burden, our understanding of the global distribution of the leishmaniases remains vague, reliant upon expert opinion and limited to poor spatial resolution. A global assessment of the consensus of evidence for leishmaniasis was performed at a sub-national level by aggregating information from a variety of sources. A database of records of cutaneous and visceral leishmaniasis occurrence was compiled from published literature, online reports, strain archives, and GenBank accessions. These, with a suite of biologically relevant environmental covariates, were used in a boosted regression tree modelling framework to generate global environmental risk maps for the leishmaniases. These high-resolution evidence-based maps can help direct future surveillance activities, identify areas to target for disease control and inform future burden estimation efforts.

Gilbert M, Golding N, Zhou H, Wint GRW, Robinson TP, Tatem AJ, Lai S, Zhou S, Jiang H, Guo D et al. 2014. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nat Commun, 5 (1), pp. 4116. | Show Abstract | Read more

Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.

Weiss DJ, Bhatt S, Mappin B, Van Boeckel TP, Smith DL, Hay SI, Gething PW. 2014. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction. Malar J, 13 (1), pp. 171. | Show Abstract | Read more

BACKGROUND: Temperature suitability for malaria transmission is a useful predictor variable for spatial models of malaria infection prevalence. Existing continental or global models, however, are synoptic in nature and so do not characterize inter-annual variability in seasonal patterns of temperature suitability, reducing their utility for predicting malaria risk. METHODS: A malaria Temperature Suitability Index (TSI) was created by first modeling minimum and maximum air temperature with an eight-day temporal resolution from gap-filled MODerate Resolution Imaging Spectroradiometer (MODIS) daytime and night-time Land Surface Temperature (LST) datasets. An improved version of an existing biological model for malaria temperature suitability was then applied to the resulting temperature information for a 13-year data series. The mechanism underlying this biological model is simulation of emergent mosquito cohorts on a two-hour time-step and tracking of each cohort throughout its life to quantify the impact air temperature has on both mosquito survival and sporozoite development. RESULTS: The results of this research consist of 154 monthly raster surfaces that characterize spatiotemporal patterns in TSI across Africa from April 2000 through December 2012 at a 1 km spatial resolution. Generalized TSI patterns were as expected, with consistently high values in equatorial rain forests, seasonally variable values in tropical savannas (wet and dry) and montane areas, and low values in arid, subtropical regions. Comparisons with synoptic approaches demonstrated the additional information available within the dynamic TSI dataset that is lost in equivalent synoptic products derived from long-term monthly averages. CONCLUSIONS: The dynamic TSI dataset presented here provides a new product with far richer spatial and temporal information than any other presently available for Africa. As spatiotemporal malaria modeling endeavors evolve, dynamic predictor variables such as the malaria temperature suitability data developed here will be essential for the rational assessment of changing patterns of malaria risk.

Bejon P, Williams TN, Nyundo C, Hay SI, Benz D, Gething PW, Otiende M, Peshu J, Bashraheil M, Greenhouse B et al. 2014. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. Elife, 3 pp. e02130. | Show Abstract | Read more

Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or 'hotspots' of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance.DOI: http://dx.doi.org/10.7554/eLife.02130.001.

Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, Van Boeckel TP, Messina JP, Shanks GD, Smith DL et al. 2014. Geographical variation in Plasmodium vivax relapse. Malar J, 13 (1), pp. 144. | Show Abstract | Read more

BACKGROUND: Plasmodium vivax has the widest geographic distribution of the human malaria parasites and nearly 2.5 billion people live at risk of infection. The control of P. vivax in individuals and populations is complicated by its ability to relapse weeks to months after initial infection. Strains of P. vivax from different geographical areas are thought to exhibit varied relapse timings. In tropical regions strains relapse quickly (three to six weeks), whereas those in temperate regions do so more slowly (six to twelve months), but no comprehensive assessment of evidence has been conducted. Here observed patterns of relapse periodicity are used to generate predictions of relapse incidence within geographic regions representative of varying parasite transmission. METHODS: A global review of reports of P. vivax relapse in patients not treated with a radical cure was conducted. Records of time to first P. vivax relapse were positioned by geographic origin relative to expert opinion regions of relapse behaviour and epidemiological zones. Mixed-effects meta-analysis was conducted to determine which geographic classification best described the data, such that a description of the pattern of relapse periodicity within each region could be described. Model outputs of incidence and mean time to relapse were mapped to illustrate the global variation in relapse. RESULTS: Differences in relapse periodicity were best described by a historical geographic classification system used to describe malaria transmission zones based on areas sharing zoological and ecological features. Maps of incidence and time to relapse showed high relapse frequency to be predominant in tropical regions and prolonged relapse in temperate areas. CONCLUSIONS: The results indicate that relapse periodicity varies systematically by geographic region and are categorized by nine global regions characterized by similar malaria transmission dynamics. This indicates that relapse may be an adaptation evolved to exploit seasonal changes in vector survival and therefore optimize transmission. Geographic patterns in P. vivax relapse are important to clinicians treating individual infections, epidemiologists trying to infer P. vivax burden, and public health officials trying to control and eliminate the disease in human populations.

Smith DL, Perkins TA, Reiner RC, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC et al. 2014. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg, 108 (4), pp. 185-197. | Show Abstract | Read more

Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

Pullan RL, Freeman MC, Gething PW, Brooker SJ. 2014. Geographical inequalities in use of improved drinking water supply and sanitation across Sub-Saharan Africa: mapping and spatial analysis of cross-sectional survey data. PLoS Med, 11 (4), pp. e1001626. | Show Abstract | Read more

BACKGROUND: Understanding geographic inequalities in coverage of drinking-water supply and sanitation (WSS) will help track progress towards universal coverage of water and sanitation by identifying marginalized populations, thus helping to control a large number of infectious diseases. This paper uses household survey data to develop comprehensive maps of WSS coverage at high spatial resolution for sub-Saharan Africa (SSA). Analysis is extended to investigate geographic heterogeneity and relative geographic inequality within countries. METHODS AND FINDINGS: Cluster-level data on household reported use of improved drinking-water supply, sanitation, and open defecation were abstracted from 138 national surveys undertaken from 1991-2012 in 41 countries. Spatially explicit logistic regression models were developed and fitted within a Bayesian framework, and used to predict coverage at the second administrative level (admin2, e.g., district) across SSA for 2012. Results reveal substantial geographical inequalities in predicted use of water and sanitation that exceed urban-rural disparities. The average range in coverage seen between admin2 within countries was 55% for improved drinking water, 54% for use of improved sanitation, and 59% for dependence upon open defecation. There was also some evidence that countries with higher levels of inequality relative to coverage in use of an improved drinking-water source also experienced higher levels of inequality in use of improved sanitation (rural populations r = 0.47, p = 0.002; urban populations r = 0.39, p = 0.01). Results are limited by the quantity of WSS data available, which varies considerably by country, and by the reliability and utility of available indicators. CONCLUSIONS: This study identifies important geographic inequalities in use of WSS previously hidden within national statistics, confirming the necessity for targeted policies and metrics that reach the most marginalized populations. The presented maps and analysis approach can provide a mechanism for monitoring future reductions in inequality within countries, reflecting priorities of the post-2015 development agenda. Please see later in the article for the Editors' Summary.

Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, Newton PN, Huffman M, Duda KA, Drakeley CJ et al. 2014. Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl Trop Dis, 8 (3), pp. e2780. | Show Abstract | Read more

BACKGROUND: The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans. METHODOLOGY/PRINCIPAL FINDINGS: After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region. CONCLUSIONS/SIGNIFICANCE: We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.

Gething PW, Battle KE, Bhatt S, Smith DL, Eisele TP, Cibulskis RE, Hay SI. 2014. Declining malaria in Africa: improving the measurement of progress. Malar J, 13 (1), pp. 39. | Show Abstract | Read more

The dramatic escalation of malaria control activities in Africa since the year 2000 has increased the importance of accurate measurements of impact on malaria epidemiology and burden. This study presents a systematic review of the emerging published evidence base on trends in malaria risk in Africa and argues that more systematic, timely, and empirically-based approaches are urgently needed to track the rapidly evolving landscape of transmission.

Johnston GL, Gething PW, Hay SI, Smith DL, Fidock DA. 2014. Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination. PLoS Comput Biol, 10 (1), pp. e1003434. | Show Abstract | Read more

Achieving a theoretical foundation for malaria elimination will require a detailed understanding of the quantitative relationships between patient treatment-seeking behavior, treatment coverage, and the effects of curative therapies that also block Plasmodium parasite transmission to mosquito vectors. Here, we report a mechanistic, within-host mathematical model that uses pharmacokinetic (PK) and pharmacodynamic (PD) data to simulate the effects of artemisinin-based combination therapies (ACTs) on Plasmodium falciparum transmission. To contextualize this model, we created a set of global maps of the fold reductions that would be necessary to reduce the malaria R C (i.e. its basic reproductive number under control) to below 1 and thus interrupt transmission. This modeling was applied to low-transmission settings, defined as having a R 0<10 based on 2010 data. Our modeling predicts that treating 93-98% of symptomatic infections with an ACT within five days of fever onset would interrupt malaria transmission for ∼91% of the at-risk population of Southeast Asia and ∼74% of the global at-risk population, and lead these populations towards malaria elimination. This level of treatment coverage corresponds to an estimated 81-85% of all infected individuals in these settings. At this coverage level with ACTs, the addition of the gametocytocidal agent primaquine affords no major gains in transmission reduction. Indeed, we estimate that it would require switching ∼180 people from ACTs to ACTs plus primaquine to achieve the same transmission reduction as switching a single individual from untreated to treated with ACTs. Our model thus predicts that the addition of gametocytocidal drugs to treatment regimens provides very small population-wide benefits and that the focus of control efforts in Southeast Asia should be on increasing prompt ACT coverage. Prospects for elimination in much of Sub-Saharan Africa appear far less favorable currently, due to high rates of infection and less frequent and less rapid treatment.

Mappin B, Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Gething PW. 2014. Comparing community P. falciparum infection prevalence measured via microscopy versus rapid diagnostic test Malaria Journal, 13 (Suppl 1), pp. P60-P60. | Read more

Johansson EW, Gething PW, Hildenwall H, Mappin B, Petzold M, Peterson SS, Selling KE. 2014. Diagnostic testing of pediatric fevers: meta-analysis of 13 national surveys assessing influences of malaria endemicity and source of care on test uptake for febrile children under five years. PLoS One, 9 (4), pp. e95483. | Show Abstract | Read more

BACKGROUND: In 2010, the World Health Organization revised guidelines to recommend diagnosis of all suspected malaria cases prior to treatment. There has been no systematic assessment of malaria test uptake for pediatric fevers at the population level as countries start implementing guidelines. We examined test use for pediatric fevers in relation to malaria endemicity and treatment-seeking behavior in multiple sub-Saharan African countries in initial years of implementation. METHODS AND FINDINGS: We compiled data from national population-based surveys reporting fever prevalence, care-seeking and diagnostic use for children under five years in 13 sub-Saharan African countries in 2009-2011/12 (n = 105,791). Mixed-effects logistic regression models quantified the influence of source of care and malaria endemicity on test use after adjusting for socioeconomic covariates. Results were stratified by malaria endemicity categories: low (PfPR2-10<5%), moderate (PfPR2-10 5-40%), high (PfPR2-10>40%). Among febrile under-fives surveyed, 16.9% (95% CI: 11.8%-21.9%) were tested. Compared to hospitals, febrile children attending non-hospital sources (OR: 0.62, 95% CI: 0.56-0.69) and community health workers (OR: 0.31, 95% CI: 0.23-0.43) were less often tested. Febrile children in high-risk areas had reduced odds of testing compared to low-risk settings (OR: 0.51, 95% CI: 0.42-0.62). Febrile children in least poor households were more often tested than in poorest (OR: 1.63, 95% CI: 1.39-1.91), as were children with better-educated mothers compared to least educated (OR: 1.33, 95% CI: 1.16-1.54). CONCLUSIONS: Diagnostic testing of pediatric fevers was low and inequitable at the outset of new guidelines. Greater testing is needed at lower or less formal sources where pediatric fevers are commonly managed, particularly to reach the poorest. Lower test uptake in high-risk settings merits further investigation given potential implications for diagnostic scale-up in these areas. Findings could inform continued implementation of new guidelines to improve access to and equity in point-of-care diagnostics use for pediatric fevers.

Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R et al. 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors, 6 (1), pp. 351. | Show Abstract | Read more

BACKGROUND: The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. METHODS: Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. RESULTS: Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. CONCLUSIONS: Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics.

WorldWide Antimalarial Resistance Network (WWARN) DP Study Group. 2013. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med, 10 (12), pp. e1001564. | Show Abstract | Read more

BACKGROUND: Dihydroartemisinin-piperaquine (DP) is increasingly recommended for antimalarial treatment in many endemic countries; however, concerns have been raised over its potential under dosing in young children. We investigated the influence of different dosing schedules on DP's clinical efficacy. METHODS AND FINDINGS: A systematic search of the literature was conducted to identify all studies published between 1960 and February 2013, in which patients were enrolled and treated with DP. Principal investigators were approached and invited to share individual patient data with the WorldWide Antimalarial Resistance Network (WWARN). Data were pooled using a standardised methodology. Univariable and multivariable risk factors for parasite recrudescence were identified using a Cox's regression model with shared frailty across the study sites. Twenty-four published and two unpublished studies (n = 7,072 patients) were included in the analysis. After correcting for reinfection by parasite genotyping, Kaplan-Meier survival estimates were 97.7% (95% CI 97.3%-98.1%) at day 42 and 97.2% (95% CI 96.7%-97.7%) at day 63. Overall 28.6% (979/3,429) of children aged 1 to 5 years received a total dose of piperaquine below 48 mg/kg (the lower limit recommended by WHO); this risk was 2.3-2.9-fold greater compared to that in the other age groups and was associated with reduced efficacy at day 63 (94.4% [95% CI 92.6%-96.2%], p<0.001). After adjusting for confounding factors, the mg/kg dose of piperaquine was found to be a significant predictor for recrudescence, the risk increasing by 13% (95% CI 5.0%-21%) for every 5 mg/kg decrease in dose; p = 0.002. In a multivariable model increasing the target minimum total dose of piperaquine in children aged 1 to 5 years old from 48 mg/kg to 59 mg/kg would halve the risk of treatment failure and cure at least 95% of patients; such an increment was not associated with gastrointestinal toxicity in the ten studies in which this could be assessed. CONCLUSIONS: DP demonstrates excellent efficacy in a wide range of transmission settings; however, treatment failure is associated with a lower dose of piperaquine, particularly in young children, suggesting potential for further dose optimisation.

Blagborough AM, Churcher T, Upton LM, Ghani AC, Gething PW, Sinden RE. 2013. TRANSMISSION-BLOCKING INTERVENTIONS ELIMINATE MALARIA FROM LABORATORY POPULATIONS PATHOGENS AND GLOBAL HEALTH, 107 (8), pp. 456-456.

Cited:

40

Scopus

Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, Buckee CO, Laxminarayan R, Hay SI, Tatem AJ. 2013. A sticky situation: The unexpected stability of malaria elimination Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1623), | Show Abstract | Read more

Malaria eradication involves eliminating malaria from every country where transmission occurs. Current theory suggests that the post-elimination challenges of remaining malaria-free by stopping transmission from imported malaria will have onerous operational and financial requirements. Although resurgent malaria has occurred in a majority of countries that tried but failed to eliminate malaria, a review of resurgence in countries that successfully eliminated finds only four such failures out of 50 successful programmes. Data documenting malaria importation and onwards transmission in these countries suggests malaria transmission potential has declined by more than 50-fold (i.e. more than 98%) since before elimination. These outcomes suggest that elimination is a surprisingly stable state. Elimination's 'stickiness' must be explained either by eliminating countries starting off qualitatively different from non-eliminating countries or becoming different once elimination was achieved. Countries that successfully eliminated were wealthier and had lower baseline endemicity than those that were unsuccessful, but our analysis shows that those same variables were at best incomplete predictors of the patterns of resurgence. Stability is reinforced by the loss of immunity to disease and by the health system's increasing capacity to control malaria transmission after elimination through routine treatment of cases with antimalarial drugs supplemented by malaria outbreak control. Human travel patterns reinforce these patterns; as malaria recedes, fewer people carry malaria from remote endemic areas to remote areas where transmission potential remains high. Establishment of an international resource with backup capacity to control large outbreaks can make elimination stickier, increase the incentives for countries to eliminate, and ensure steady progress towards global eradication. Although available evidence supports malaria elimination's stickiness at moderate-to-low transmission in areas with well-developed health systems, it is not yet clear if such patterns will hold in all areas. The sticky endpoint changes the projected costs of maintaining elimination and makes it substantially more attractive for countries acting alone, and it makes spatially progressive elimination a sensible strategy for a malaria eradication endgame. © 2013 The Authors.

Elyazar IRF, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R, Winarno, Baird JK, Hay SI, Bangs MJ. 2013. The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol, 83 pp. 173-266. | Show Abstract | Read more

Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.

Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, Buckee CO, Laxminarayan R, Hay SI, Tatem AJ. 2013. A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond B Biol Sci, 368 (1623), pp. 20120145. | Show Abstract | Read more

Malaria eradication involves eliminating malaria from every country where transmission occurs. Current theory suggests that the post-elimination challenges of remaining malaria-free by stopping transmission from imported malaria will have onerous operational and financial requirements. Although resurgent malaria has occurred in a majority of countries that tried but failed to eliminate malaria, a review of resurgence in countries that successfully eliminated finds only four such failures out of 50 successful programmes. Data documenting malaria importation and onwards transmission in these countries suggests malaria transmission potential has declined by more than 50-fold (i.e. more than 98%) since before elimination. These outcomes suggest that elimination is a surprisingly stable state. Elimination's 'stickiness' must be explained either by eliminating countries starting off qualitatively different from non-eliminating countries or becoming different once elimination was achieved. Countries that successfully eliminated were wealthier and had lower baseline endemicity than those that were unsuccessful, but our analysis shows that those same variables were at best incomplete predictors of the patterns of resurgence. Stability is reinforced by the loss of immunity to disease and by the health system's increasing capacity to control malaria transmission after elimination through routine treatment of cases with antimalarial drugs supplemented by malaria outbreak control. Human travel patterns reinforce these patterns; as malaria recedes, fewer people carry malaria from remote endemic areas to remote areas where transmission potential remains high. Establishment of an international resource with backup capacity to control large outbreaks can make elimination stickier, increase the incentives for countries to eliminate, and ensure steady progress towards global eradication. Although available evidence supports malaria elimination's stickiness at moderate-to-low transmission in areas with well-developed health systems, it is not yet clear if such patterns will hold in all areas. The sticky endpoint changes the projected costs of maintaining elimination and makes it substantially more attractive for countries acting alone, and it makes spatially progressive elimination a sensible strategy for a malaria eradication endgame.

Tatem AJ, Gething PW, Smith DL, Hay SI. 2013. Urbanization and the global malaria recession. Malar J, 12 (1), pp. 133. | Show Abstract | Read more

BACKGROUND: The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. METHODS: Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. RESULTS/CONCLUSIONS: A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control.

Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, Williams TN, Weatherall DJ, Hay SI. 2013. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep, 3 (1), pp. 1671. | Show Abstract | Read more

Haemoglobin C (HbC) is one of the commonest structural haemoglobin variants in human populations. Although HbC causes mild clinical complications, its diagnosis and genetic counselling are important to prevent inheritance with other haemoglobinopathies. Little is known about its contemporary distribution and the number of newborns affected. We assembled a global database of population surveys. We then used a Bayesian geostatistical model to create maps of HbC frequency across Africa and paired our predictions with high-resolution demographics to calculate heterozygous (AC) and homozygous (CC) newborn estimates and their associated uncertainty. Data were too sparse outside Africa for this methodology to be applied. The highest frequencies were found in West Africa but HbC was commonly found in other parts of the continent. The expected annual numbers of AC and CC newborns in Africa were 672,117 (interquartile range (IQR): 642,116-705,163) and 28,703 (IQR: 26,027-31,958), respectively. These numbers are about two times previous estimates.

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O et al. 2013. The global distribution and burden of dengue. Nature, 496 (7446), pp. 504-507. | Show Abstract | Read more

Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC, Bisanzio D et al. 2013. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J R Soc Interface, 10 (81), pp. 20120921. | Show Abstract | Read more

Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross-Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross-Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross-Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.

Hay SI, Battle KE, Pigott DM, Smith DL, Moyes CL, Bhatt S, Brownstein JS, Collier N, Myers MF, George DB, Gething PW. 2013. Global mapping of infectious disease. Philos Trans R Soc Lond B Biol Sci, 368 (1614), pp. 20120250. | Show Abstract | Read more

The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer 'cognitive surplus' through crowdsourcing.

Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI. 2013. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet, 381 (9861), pp. 142-151. | Show Abstract | Read more

BACKGROUND: Reliable estimates of populations affected by diseases are necessary to guide efficient allocation of public health resources. Sickle haemoglobin (HbS) is the most common and clinically significant haemoglobin structural variant, but no contemporary estimates exist of the global populations affected. Moreover, the precision of available national estimates of heterozygous (AS) and homozygous (SS) neonates is unknown. We aimed to provide evidence-based estimates at various scales, with uncertainty measures. METHODS: Using a database of sickle haemoglobin surveys, we created a contemporary global map of HbS allele frequency distribution within a Bayesian geostatistical model. The pairing of this map with demographic data enabled calculation of global, regional, and national estimates of the annual number of AS and SS neonates. Subnational estimates were also calculated in data-rich areas. FINDINGS: Our map shows subnational spatial heterogeneities and high allele frequencies across most of sub-Saharan Africa, the Middle East, and India, as well as gene flow following migrations to western Europe and the eastern coast of the Americas. Accounting for local heterogeneities and demographic factors, we estimated that the global number of neonates affected by HbS in 2010 included 5,476,000 (IQR 5,291,000-5,679,000) AS neonates and 312,000 (294,000-330,000) SS neonates. These global estimates are higher than previous conservative estimates. Important differences predicted at the national level are discussed. INTERPRETATION: HbS will have an increasing effect on public health systems. Our estimates can help countries and the international community gauge the need for appropriate diagnoses and genetic counselling to reduce the number of neonates affected. Similar mapping and modelling methods could be used for other inherited disorders. FUNDING: The Wellcome Trust.

Blagborough AM, Churcher TS, Upton LM, Ghani AC, Gething PW, Sinden RE. 2013. Transmission-blocking interventions eliminate malaria from laboratory populations. Nat Commun, 4 (1), pp. 1812. | Show Abstract | Read more

Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field.

Chiyaka C, Tatem AJ, Cohen JM, Gething PW, Johnston G, Gosling R, Laxminarayan R, Hay SI, Smith DL. 2013. Infectious disease. The stability of malaria elimination. Science, 339 (6122), pp. 909-910. | Show Abstract | Read more

Eradication may not be necessary before countries can eliminate, scale back control, and rely on health systems.

Qi Q, Guerra CA, Moyes CL, Elyazar IRF, Gething PW, Hay SI, Tatem AJ. 2012. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J, 11 (1), pp. 403. | Show Abstract | Read more

BACKGROUND: Many recent studies have examined the impact of urbanization on Plasmodium falciparum malaria endemicity and found a general trend of reduced transmission in urban areas. However, none has examined the effect of urbanization on Plasmodium vivax malaria, which is the most widely distributed malaria species and can also cause severe clinical syndromes in humans. In this study, a set of 10,003 community-based P. vivax parasite rate (PvPR) surveys are used to explore the relationships between PvPR in urban and rural settings. METHODS: The PvPR surveys were overlaid onto a map of global urban extents to derive an urban/rural assignment. The differences in PvPR values between urban and rural areas were then examined. Groups of PvPR surveys inside individual city extents (urban) and surrounding areas (rural) were identified to examine the local variations in PvPR values. Finally, the relationships of PvPR between urban and rural areas within the ranges of 41 dominant Anopheles vectors were examined. RESULTS: Significantly higher PvPR values in rural areas were found globally. The relationship was consistent at continental scales when focusing on Africa and Asia only, but in the Americas, significantly lower values of PvPR in rural areas were found, though the numbers of surveys were small. Moreover, except for the countries in the Americas, the same trends were found at national scales in African and Asian countries, with significantly lower values of PvPR in urban areas. However, the patterns at city scales among 20 specific cities where sufficient data were available were less clear, with seven cities having significantly lower PvPR values in urban areas and two cities showing significantly lower PvPR in rural areas. The urban-rural PvPR differences within the ranges of the dominant Anopheles vectors were generally, in agreement with the regional patterns found. CONCLUSIONS: Except for the Americas, the patterns of significantly lower P. vivax transmission in urban areas have been found globally, regionally, nationally and by dominant vector species here, following trends observed previously for P. falciparum. To further understand these patterns, more epidemiological, entomological and parasitological analyses of the disease at smaller spatial scales are needed.

Battle KE, Gething PW, Elyazar IRF, Moyes CL, Sinka ME, Howes RE, Guerra CA, Price RN, Baird KJ, Hay SI. 2012. The global public health significance of Plasmodium vivax. Adv Parasitol, 80 pp. 1-111. | Show Abstract | Read more

Plasmodium vivax occurs globally and thrives in both temperate and tropical climates. Here, we review the evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries. We also review the most recent evidence for the endemic level of transmission within its range and discuss the implications for burden of disease assessments. Finally, the evidence-base for defining the contemporary distribution and PAR of P. vivax are discussed alongside a description of the vectors of human malaria within the limits of risk. This information along with recent data documenting the severe morbid and fatal consequences of P. vivax infection indicates that the public health significance of P. vivax is likely to have been seriously underestimated.

Gething PW, Johnson FA, Frempong-Ainguah F, Nyarko P, Baschieri A, Aboagye P, Falkingham J, Matthews Z, Atkinson PM. 2012. Geographical access to care at birth in Ghana: a barrier to safe motherhood. BMC Public Health, 12 (1), pp. 991. | Show Abstract | Read more

BACKGROUND: Appropriate facility-based care at birth is a key determinant of safe motherhood but geographical access remains poor in many high burden regions. Despite its importance, geographical access is rarely audited systematically, preventing integration in national-level maternal health system assessment and planning. In this study, we develop a uniquely detailed set of spatially-linked data and a calibrated geospatial model to undertake a national-scale audit of geographical access to maternity care at birth in Ghana, a high-burden country typical of many in sub-Saharan Africa. METHODS: We assembled detailed spatial data on the population, health facilities, and landscape features influencing journeys. These were used in a geospatial model to estimate journey-time for all women of childbearing age (WoCBA) to their nearest health facility offering differing levels of care at birth, taking into account different transport types and availability. We calibrated the model using data on actual journeys made by women seeking care. RESULTS: We found that a third of women (34%) in Ghana live beyond the clinically significant two-hour threshold from facilities likely to offer emergency obstetric and neonatal care (EmONC) classed at the 'partial' standard or better. Nearly half (45%) live that distance or further from 'comprehensive' EmONC facilities, offering life-saving blood transfusion and surgery. In the most remote regions these figures rose to 63% and 81%, respectively. Poor levels of access were found in many regions that meet international targets based on facilities-per-capita ratios. CONCLUSIONS: Detailed data assembly combined with geospatial modelling can provide nation-wide audits of geographical access to care at birth to support systemic maternal health planning, human resource deployment, and strategic targeting. Current international benchmarks of maternal health care provision are inadequate for these purposes because they fail to take account of the location and accessibility of services relative to the women they serve.

Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, Hogg MM, Battle KE, Padilla CD, Baird JK, Hay SI. 2012. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med, 9 (11), pp. e1001339. | Show Abstract | Read more

BACKGROUND: Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. METHODS AND FINDINGS: Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4-8.8) across MECs, and 5.3% (4.4-6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries, where variants were most severe, had the highest relative risks from G6PDd. CONCLUSIONS: G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit. Please see later in the article for the Editors' Summary.

Cohen JM, Woolsey AM, Sabot OJ, Gething PW, Tatem AJ, Moonen B. 2012. Public health. Optimizing investments in malaria treatment and diagnosis. Science, 338 (6107), pp. 612-614. | Read more

Gething PW, Elyazar IRF, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF et al. 2012. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis, 6 (9), pp. e1814. | Show Abstract | Read more

BACKGROUND: Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. METHODOLOGY AND FINDINGS: We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1-99 year age range (PvPR(1-99)) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR(1-99). The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR. CONCLUSIONS AND SIGNIFICANCE: This detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination.

Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis, 6 (8), pp. e1760. | Show Abstract | Read more

BACKGROUND: Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. METHODS/PRINCIPAL FINDINGS: A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. CONCLUSION: The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.

Pigott DM, Atun R, Moyes CL, Hay SI, Gething PW. 2012. Funding for malaria control 2006-2010: a comprehensive global assessment. Malar J, 11 (1), pp. 246. | Show Abstract | Read more

BACKGROUND: The last decade has seen a dramatic increase in international and domestic funding for malaria control, coupled with important declines in malaria incidence and mortality in some regions of the world. As the ongoing climate of financial uncertainty places strains on investment in global health, there is an increasing need to audit the origin, recipients and geographical distribution of funding for malaria control relative to populations at risk of the disease. METHODS: A comprehensive review of malaria control funding from international donors, bilateral sources and national governments was undertaken to reconstruct total funding by country for each year 2006 to 2010. Regions at risk from Plasmodium falciparum and/or Plasmodium vivax transmission were identified using global risk maps for 2010 and funding was assessed relative to populations at risk. Those nations with unequal funding relative to a regional average were identified and potential explanations highlighted, such as differences in national policies, government inaction or donor neglect. RESULTS: US$8.9 billion was disbursed for malaria control and elimination programmes over the study period. Africa had the largest levels of funding per capita-at-risk, with most nations supported primarily by international aid. Countries of the Americas, in contrast, were supported typically through national government funding. Disbursements and government funding in Asia were far lower with a large variation in funding patterns. Nations with relatively high and low levels of funding are discussed. CONCLUSIONS: Global funding for malaria control is substantially less than required. Inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination. Efforts to sustain and increase international investment in malaria control should be informed by evidence-based assessment of funding equity.

Elyazar IRF, Gething PW, Patil AP, Rogayah H, Sariwati E, Palupi NW, Tarmizi SN, Kusriastuti R, Baird JK, Hay SI. 2012. Plasmodium vivax malaria endemicity in Indonesia in 2010. PLoS One, 7 (5), pp. e37325. | Show Abstract | Read more

BACKGROUND: Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. METHODS: Plasmodium vivax Annual Parasite Incidence data (2006-2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985-2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1-99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR(1-99) endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. RESULTS: We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. CONCLUSION: Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.

Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH et al. 2012. A global map of dominant malaria vectors. Parasit Vectors, 5 (1), pp. 69. | Show Abstract | Read more

BACKGROUND: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. METHODS: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. RESULTS: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. CONCLUSIONS: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.

Cited:

28

Scopus

Cohen JM, Woolsey AM, Sabot OJ, Gething PW, Tatem AJ, Moonen B. 2012. Optimizing investments in malaria treatment and diagnosis Science, 338 (6107), pp. 612-614. | Show Abstract | Read more

Better targeting of antimalarials to people who need them will maximize the impact of interventions in the private sector.

Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, Tatem AJ, Hay SI. 2011. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J, 10 (1), pp. 378. | Show Abstract | Read more

BACKGROUND: Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). METHODS: Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. RESULTS: An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. CONCLUSIONS: The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 2015.

van Eijk AM, Hill J, Alegana VA, Kirui V, Gething PW, ter Kuile FO, Snow RW. 2011. Coverage of malaria protection in pregnant women in sub-saharan Africa: a synthesis and analysis of national survey data TROPICAL MEDICINE & INTERNATIONAL HEALTH, 16 pp. 35-35.

Stern DI, Gething PW, Kabaria CW, Temperley WH, Noor AM, Okiro EA, Shanks GD, Snow RW, Hay SI. 2011. Temperature and malaria trends in highland East Africa. PLoS One, 6 (9), pp. e24524. | Show Abstract | Read more

There has been considerable debate on the existence of trends in climate in the highlands of East Africa and hypotheses about their potential effect on the trends in malaria in the region. We apply a new robust trend test to mean temperature time series data from three editions of the University of East Anglia's Climatic Research Unit database (CRU TS) for several relevant locations. We find significant trends in the data extracted from newer editions of the database but not in the older version for periods ending in 1996. The trends in the newer data are even more significant when post-1996 data are added to the samples. We also test for trends in the data from the Kericho meteorological station prepared by Omumbo et al. We find no significant trend in the 1979-1995 period but a highly significant trend in the full 1979-2009 sample. However, although the malaria cases observed at Kericho, Kenya rose during a period of resurgent epidemics (1994-2002) they have since returned to a low level. A large assembly of parasite rate surveys from the region, stratified by altitude, show that this decrease in malaria prevalence is not limited to Kericho.

Gething PW, Tatem AJ. 2011. Can mobile phone data improve emergency response to natural disasters? PLoS Med, 8 (8), pp. e1001085. | Read more

Elyazar IRF, Gething PW, Patil AP, Rogayah H, Kusriastuti R, Wismarini DM, Tarmizi SN, Baird JK, Hay SI. 2011. Plasmodium falciparum malaria endemicity in Indonesia in 2010. PLoS One, 6 (6), pp. e21315. | Show Abstract | Read more

BACKGROUND: Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. METHODS: Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006-2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985-2009). After quality control, 2,516 were included into a national database of age-standardized 2-10 year old PfPR data (PfPR(2-10)) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR(2-10) endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. RESULTS: We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. CONCLUSION: While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies.

Patil AP, Gething PW, Piel FB, Hay SI. 2011. Bayesian geostatistics in health cartography: the perspective of malaria. Trends Parasitol, 27 (6), pp. 246-253. | Show Abstract | Read more

Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.

Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, Hay SI. 2011. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit Vectors, 4 (1), pp. 92. | Show Abstract | Read more

BACKGROUND: Temperature is a key determinant of environmental suitability for transmission of human malaria, modulating endemicity in some regions and preventing transmission in others. The spatial modelling of malaria endemicity has become increasingly sophisticated and is now central to the global scale planning, implementation, and monitoring of disease control and regional efforts towards elimination, but existing efforts to model the constraints of temperature on the malaria landscape at these scales have been simplistic. Here, we define an analytical framework to model these constraints appropriately at fine spatial and temporal resolutions, providing a detailed dynamic description that can enhance large scale malaria cartography as a decision-support tool in public health. RESULTS: We defined a dynamic biological model that incorporated the principal mechanisms of temperature dependency in the malaria transmission cycle and used it with fine spatial and temporal resolution temperature data to evaluate time-series of temperature suitability for transmission of Plasmodium falciparum and P. vivax throughout an average year, quantified using an index proportional to the basic reproductive number. Time-series were calculated for all 1 km resolution land pixels globally and were summarised to create high-resolution maps for each species delineating those regions where temperature precludes transmission throughout the year. Within suitable zones we mapped for each pixel the number of days in which transmission is possible and an integrated measure of the intensity of suitability across the year. The detailed evaluation of temporal suitability dynamics provided by the model is visualised in a series of accompanying animations. CONCLUSIONS: These modelled products, made available freely in the public domain, can support the refined delineation of populations at risk; enhance endemicity mapping by offering a detailed, dynamic, and biologically driven alternative to the ubiquitous empirical incorporation of raw temperature data in geospatial models; and provide a rich spatial and temporal platform for future biological modelling studies.

Cited:

201

Scopus

Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. 2011. The dominant anopheles vectors of human malaria in the Asia-Pacific region: Occurrence data, distribution maps and bionomic précis Parasites and Vectors, 4 (1), | Show Abstract | Read more

Background: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions: This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps. © 2011 Sinka et al; licensee BioMed Central Ltd.

Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, Zimmerman PA, Barnadas C, Beall CM, Gebremedhin A et al. 2011. The global distribution of the Duffy blood group. Nat Commun, 2 (1), pp. 266. | Show Abstract | Read more

Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*B(ES) variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite.

Pullan RL, Gething PW, Smith JL, Mwandawiro CS, Sturrock HJW, Gitonga CW, Hay SI, Brooker S. 2011. Spatial modelling of soil-transmitted helminth infections in Kenya: a disease control planning tool. PLoS Negl Trop Dis, 5 (2), pp. e958. | Show Abstract | Read more

BACKGROUND: Implementation of control of parasitic diseases requires accurate, contemporary maps that provide intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of 20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009. METHODS AND FINDINGS: Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time geostatistical models were developed for each species, and were used to interpolate the probability that infection prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for associations between species. Population census data were combined with risk models and projected to estimate the population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was below the 20% threshold, with areas of endemicity ≥ 20% located around the shores of Lake Victoria and on the coast. Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment. CONCLUSIONS: Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence of STH and suggest that a quarter of Kenya's school-aged children live in areas of high prevalence and warrant mass treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in helminth control.

Sturrock HJW, Gething PW, Ashton RA, Kolaczinski JH, Kabatereine NB, Brooker S. 2011. Planning schistosomiasis control: investigation of alternative sampling strategies for Schistosoma mansoni to target mass drug administration of praziquantel in East Africa International Health,

Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. 2011. Correction: The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors, 4 (1), pp. 210. | Read more

Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IRF, Kabaria CW, Harbach RE, Hay SI. 2011. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors, 4 (1), pp. 89. | Show Abstract | Read more

BACKGROUND: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. RESULTS: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. CONCLUSIONS: This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.

Cited:

83

Scopus

Van Eijk AM, Hill J, Alegana VA, Kirui V, Gething PW, ter Kuile FO, Snow RW. 2011. Coverage of malaria protection in pregnant women in sub-Saharan Africa: A synthesis and analysis of national survey data The Lancet Infectious Diseases, 11 (3), pp. 190-207. | Show Abstract | Read more

Background: Insecticide-treated nets and intermittent preventive treatment with sulfadoxine-pyrimethamine are recommended for the control of malaria during pregnancy in endemic areas in Africa, but there has been no analysis of coverage data at a subnational level. We aimed to synthesise data from national surveys about these interventions, accounting for disparities in malaria risk within national borders. Methods: We extracted data for specific strategies for malaria control in pregnant women from national malaria policies from endemic countries in Africa. We identified the most recent national household cluster-sample surveys recording intermittent preventive treatment with sulfadoxine-pyrimethamine and use of insecticide-treated nets. We reconciled data to subnational administrative units to construct a model to estimate the number of pregnant women covered by a recommended intervention in 2007. Findings: 45 (96%) of 47 countries surveyed had a policy for distribution of insecticide-treated nets for pregnant women; estimated coverage in 2007 was 4·7 million (17%) of 27·7 million pregnancies at risk of malaria in 32 countries with data. 39 (83%) of 47 countries surveyed had an intermittent preventive treatment policy; in 2007, an estimated 6·4 million (25%) of 25·6 million pregnant women received at least one dose of treatment and 19·8 million (77%) visited an antenatal clinic (31 countries). Estimated coverage was lowest in areas of high-intensity transmission of malaria. Interpretation: Despite success in a few countries, coverage of insecticide-treated nets and intermittent preventive treatment in pregnant African women is inadequate; increased efforts towards scale-up are needed. Funding: The Malaria in Pregnancy Consortium and Wellcome Trust. © 2011 Elsevier Ltd.

Magalhães RJS, Clements ACA, Patil AP, Gething PW, Brooker S. 2011. The applications of model-based geostatistics in helminth epidemiology and control. Adv Parasitol, 74 (C), pp. 267-296. | Show Abstract | Read more

Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes.

Cited:

42

Scopus

Tatem AJ, Campiz N, Gething PW, Snow RW, Linard C. 2011. The effects of spatial population dataset choice on estimates of population at risk of disease Population Health Metrics, 9 | Show Abstract | Read more

Background: The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example.Methods: The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets.Results: The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets.Conclusions: Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions. © 2011 Tatem et al; licensee BioMed Central Ltd.

van Eijk AM, Hill J, Alegana VA, Kirui V, Gething PW, ter Kuile FO, Snow RW. 2011. Coverage of malaria protection in pregnant women in sub-Saharan Africa: a synthesis and analysis of national survey data. Lancet Infect Dis, 11 (3), pp. 190-207. | Show Abstract | Read more

BACKGROUND: Insecticide-treated nets and intermittent preventive treatment with sulfadoxine-pyrimethamine are recommended for the control of malaria during pregnancy in endemic areas in Africa, but there has been no analysis of coverage data at a subnational level. We aimed to synthesise data from national surveys about these interventions, accounting for disparities in malaria risk within national borders. METHODS: We extracted data for specific strategies for malaria control in pregnant women from national malaria policies from endemic countries in Africa. We identified the most recent national household cluster-sample surveys recording intermittent preventive treatment with sulfadoxine-pyrimethamine and use of insecticide-treated nets. We reconciled data to subnational administrative units to construct a model to estimate the number of pregnant women covered by a recommended intervention in 2007. FINDINGS: 45 (96%) of 47 countries surveyed had a policy for distribution of insecticide-treated nets for pregnant women; estimated coverage in 2007 was 4·7 million (17%) of 27·7 million pregnancies at risk of malaria in 32 countries with data. 39 (83%) of 47 countries surveyed had an intermittent preventive treatment policy; in 2007, an estimated 6·4 million (25%) of 25·6 million pregnant women received at least one dose of treatment and 19·8 million (77%) visited an antenatal clinic (31 countries). Estimated coverage was lowest in areas of high-intensity transmission of malaria. INTERPRETATION: Despite success in a few countries, coverage of insecticide-treated nets and intermittent preventive treatment in pregnant African women is inadequate; increased efforts towards scale-up are needed. FUNDING: The Malaria in Pregnancy Consortium and Wellcome Trust.

Tatem AJ, Campiz N, Gething PW, Snow RW, Linard C. 2011. The effects of spatial population dataset choice on estimates of population at risk of disease. Popul Health Metr, 9 (1), pp. 4. | Show Abstract | Read more

BACKGROUND: The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example. METHODS: The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets. RESULTS: The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets. CONCLUSIONS: Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions.

Tatem AJ, Smith DL, Gething PW, Kabaria CW, Snow RW, Hay SI. 2011. Department of Error The Lancet, 377 (9759), pp. 30-30. | Read more

Binney HA, Gething PW, Nield JM, Sugita S, Edwards ME. 2011. Tree line identification from pollen data: beyond the limit? JOURNAL OF BIOGEOGRAPHY, 38 (9), pp. 1792-1806. | Show Abstract | Read more

Aim The boreal tree line is a prominent biogeographic feature, the position of which reflects climatic conditions. Pollen is the key sensor used to reconstruct past tree line patterns. Our aims in this study were to investigate pollen-vegetation relationships at the boreal tree line and to assess the success of a modified version of the biomization method that incorporates pollen productivity and dispersal in distinguishing the tree line. Location Northern Canada (307 sites) and Alaska (316 sites). Methods The REVEALS method for estimating regional vegetation composition from pollen data was simplified to provide correction factors to account for differential production and dispersal of pollen among taxa. The REVEALS-based correction factors were used to adapt the biomization method and applied as a set of experiments to pollen data from lake sediments and moss polsters from the boreal tree line. Proportions of forest and tundra predicted from modern pollen samples along two longitudinal transects were compared with those derived from a vegetation map by: (1) a tally of 'correct' versus 'incorrect' assignments using vegetation in the relevant map pixels, and (2) a comparison of the shape and position of north-south forest-cover curves generated from all transect pixels and from pollen data. Possible causes of bias in the misclassifications were assessed. Results Correcting for pollen productivity alone gave fewest misclassifications and the closest estimate of the modern mapped tree line position (Canada, +300km; Alaska, +10km). In Canada success rates were c.40-70% and all experiments over-predicted forest cover. Most corrections improved results over uncorrected biomization; using only lakes improved success rates to c.80%. In Alaska success rates were 70-80% and classification errors were more evenly distributed; there was little improvement over uncorrected biomization. Main conclusions Corrected biomization should improve broad-scale reconstructions of spatial patterns in forest/non-forest vegetation mosaics and across climate-sensitive ecotones. The Canadian example shows this is particularly the case in regions affected by taxa with extremely high pollen productivity (such as Pinus). Improved representation of actual vegetation distribution is most likely if pollen data from lake sediments are used because the REVEALS algorithm is based on the pollen dynamics of lake-based systems. © 2011 Blackwell Publishing Ltd.

Sturrock HJW, Gething PW, Ashton RA, Kolaczinski JH, Kabatereine NB, Brooker S. 2011. Planning schistosomiasis control: investigation of alternative sampling strategies for Schistosoma mansoni to target mass drug administration of praziquantel in East Africa. Int Health, 3 (3), pp. 165-175. | Show Abstract | Read more

In schistosomiasis control, there is a need to geographically target treatment to populations at high risk of morbidity. This paper evaluates alternative sampling strategies for surveys of Schistosoma mansoni to target mass drug administration in Kenya and Ethiopia. Two main designs are considered: lot quality assurance sampling (LQAS) of children from all schools; and a geostatistical design that samples a subset of schools and uses semi-variogram analysis and spatial interpolation to predict prevalence in the remaining unsurveyed schools. Computerized simulations are used to investigate the performance of sampling strategies in correctly classifying schools according to treatment needs and their cost-effectiveness in identifying high prevalence schools. LQAS performs better than geostatistical sampling in correctly classifying schools, but at a cost with a higher cost per high prevalence school correctly classified. It is suggested that the optimal surveying strategy for S. mansoni needs to take into account the goals of the control programme and the financial and drug resources available.

Tatem AJ, Smith DL, Gething PW, Kabaria CW, Snow RW, Hay SI. 2010. Ranking of elimination feasibility between malaria-endemic countries. Lancet, 376 (9752), pp. 1579-1591. | Show Abstract | Read more

Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.

Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, Weatherall DJ, Hay SI. 2010. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun, 1 (8), pp. 104. | Show Abstract | Read more

It has been 100 years since the first report of sickle haemoglobin (HbS). More than 50 years ago, it was suggested that the gene responsible for this disorder could reach high frequencies because of resistance conferred against malaria by the heterozygous carrier state. This traditional example of balancing selection is known as the 'malaria hypothesis'. However, the geographical relationship between the transmission intensity of malaria and associated HbS burden has never been formally investigated on a global scale. Here, we use a comprehensive data assembly of HbS allele frequencies to generate the first evidence-based map of the worldwide distribution of the gene in a Bayesian geostatistical framework. We compare this map with the pre-intervention distribution of malaria endemicity, using a novel geostatistical area-mean comparison. We find geographical support for the malaria hypothesis globally; the relationship is relatively strong in Africa but cannot be resolved in the Americas or in Asia.

Snow RW, Okiro EA, Gething PW, Atun R, Hay SI. 2010. Equity and adequacy of international donor assistance for global malaria control: an analysis of populations at risk and external funding commitments. Lancet, 376 (9750), pp. 1409-1416. | Show Abstract | Read more

BACKGROUND: Financing for malaria control has increased as part of international commitments to achieve the Millennium Development Goals (MDGs). We aimed to identify the unmet financial needs that would be biologically and economically equitable and would increase the chances of reaching worldwide malaria-control ambitions. METHODS: Populations at risk of stable Plasmodium falciparum or Plasmodium vivax transmission were calculated for 2007 and 2009 for 93 malaria-endemic countries to measure biological need. National per-person gross domestic product (GDP) was used to define economic need. An analysis of external donor assistance for malaria control was done for the period 2002-09 to compute overall and annualised per-person at-risk-funding commitments. Annualised malaria donor assistance was compared with independent predictions of funding needed to reach international targets of 80% coverage of best practices in case-management and effective disease prevention. Countries were ranked in relation to biological, economic, and unmet needs to examine equity and adequacy of support by 2010. FINDINGS: International financing for malaria control has increased by 166% (from $0·73 billion to $1·94 billion) since 2007 and is broadly consistent with biological needs. African countries have become major recipients of external assistance; however, countries where P vivax continues to pose threats to control ambitions are not as well funded. 21 countries have reached adequate assistance to provide a comprehensive suite of interventions by 2009, including 12 countries in Africa. However, this assistance was inadequate for 50 countries representing 61% of the worldwide population at risk of malaria-including ten countries in Africa and five in Asia that coincidentally are some of the poorest countries. Approval of donor funding for malaria control does not correlate with GDP. INTERPRETATION: Funding for malaria control worldwide is 60% lower than the US$4·9 billion needed for comprehensive control in 2010; this includes funding shortfalls for a wide range of countries with different numbers of people at risk and different levels of domestic income. More efficient targeting of financial resources against biological need and national income should create a more equitable investment portfolio that with increased commitments will guarantee sustained financing of control in countries most at risk and least able to support themselves. FUNDING: Wellcome Trust.

Hay SI, Gething PW, Snow RW. 2010. India's invisible malaria burden. Lancet, 376 (9754), pp. 1716-1717. | Read more

Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. 2010. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors, 3 (1), pp. 72. | Show Abstract | Read more

BACKGROUND: An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. RESULTS: A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. CONCLUSIONS: The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project.

Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IRF et al. 2010. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis, 4 (8), pp. e774. | Show Abstract | Read more

BACKGROUND: A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009. METHODOLOGY: The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (<0.1 case per 1,000 people per annum (p.a.)) and stable (> or =0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially. CONCLUSIONS: After more than a century of development and control, P. vivax remains more widely distributed than P. falciparum and is a potential cause of morbidity and mortality amongst the 2.85 billion people living at risk of infection, the majority of whom are in the tropical belt of CSE Asia. The probability of infection is reduced massively across Africa by the frequency of the Duffy negative trait, but transmission does occur on the continent and is a concern for Duffy positive locals and travellers. The final map provides the spatial limits on which the endemicity of P. vivax transmission can be mapped to support future cartographic-based burden estimations.

Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW. 2010. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med, 7 (6), pp. e1000290. | Show Abstract | Read more

BACKGROUND: The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. METHODS AND FINDINGS: In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349-552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked according to their relative uncertainty and replaced by surveillance-based estimates in the least certain half, 98% of the global clinical burden continued to be estimated by cartographic techniques. CONCLUSIONS AND SIGNIFICANCE: Cartographic approaches to burden estimation provide a globally consistent measure of malaria morbidity of known fidelity, and they represent the only plausible method in those malaria-endemic countries with nonfunctional national surveillance. Unacceptable uncertainty in the clinical burden of malaria in only four countries confounds our ability to evaluate needs and monitor progress toward international targets for malaria control at the global scale. National prevalence surveys in each nation would reduce this uncertainty profoundly. Opportunities for further reducing uncertainty in clinical burden estimates by hybridizing alternative burden estimation procedures are also evaluated.

Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI. 2010. Climate change and the global malaria recession. Nature, 465 (7296), pp. 342-345. | Show Abstract | Read more

The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

Gething PW, Patil AP, Hay SI. 2010. Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation. PLoS Comput Biol, 6 (4), pp. e1000724. | Show Abstract | Read more

Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.

Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, Benz D, Gething PW, Howes RE, Patil AP et al. 2010. Developing global maps of the dominant anopheles vectors of human malaria. PLoS Med, 7 (2), pp. e1000209. | Read more

Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW et al. 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors, 3 (1), pp. 117. | Show Abstract | Read more

BACKGROUND: This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. RESULTS: A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. CONCLUSIONS: The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.

Gething PW, Kirui VC, Alegana VA, Okiro EA, Noor AM, Snow RW. 2010. Estimating the number of paediatric fevers associated with malaria infection presenting to Africa's public health sector in 2007. PLoS Med, 7 (7), pp. e1000301. | Show Abstract | Read more

BACKGROUND: As international efforts to increase the coverage of artemisinin-based combination therapy in public health sectors gather pace, concerns have been raised regarding their continued indiscriminate presumptive use for treating all childhood fevers. The availability of rapid-diagnostic tests to support practical and reliable parasitological diagnosis provides an opportunity to improve the rational treatment of febrile children across Africa. However, the cost effectiveness of diagnosis-based treatment polices will depend on the presumed numbers of fevers harbouring infection. Here we compute the number of fevers likely to present to public health facilities in Africa and the estimated number of these fevers likely to be infected with Plasmodium falciparum malaria parasites. METHODS AND FINDINGS: We assembled first administrative-unit level data on paediatric fever prevalence, treatment-seeking rates, and child populations. These data were combined in a geographical information system model that also incorporated an adjustment procedure for urban versus rural areas to produce spatially distributed estimates of fever burden amongst African children and the subset likely to present to public sector clinics. A second data assembly was used to estimate plausible ranges for the proportion of paediatric fevers seen at clinics positive for P. falciparum in different endemicity settings. We estimated that, of the 656 million fevers in African 0-4 y olds in 2007, 182 million (28%) were likely to have sought treatment in a public sector clinic of which 78 million (43%) were likely to have been infected with P. falciparum (range 60-103 million). CONCLUSIONS: Spatial estimates of childhood fevers and care-seeking rates can be combined with a relational risk model of infection prevalence in the community to estimate the degree of parasitemia in those fevers reaching public health facilities. This quantification provides an important baseline comparison of malarial and nonmalarial fevers in different endemicity settings that can contribute to ongoing scientific and policy debates about optimum clinical and financial strategies for the introduction of new diagnostics. These models are made publicly available with the publication of this paper.

Cited:

279

Scopus

Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW et al. 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic précis Parasites and Vectors, 3 (1), | Show Abstract | Read more

Background. This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results. A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions. The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control. © 2010 Sinka et al; licensee BioMed Central Ltd.

Cited:

36

Scopus

Hay SI, Gething PW, Snow RW. 2010. India's invisible malaria burden The Lancet, 376 (9754), pp. 1716-1717. | Read more

Cited:

69

Scopus

Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. 2010. The dominant Anopheles vectors of human malaria in the Americas: Occurrence data, distribution maps and bionomic précis Parasites and Vectors, 3 (1), | Show Abstract | Read more

Background: An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results: A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions: The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project. © 2010 Sinka et al; licensee BioMed Central Ltd.

Sturrock HJW, Gething PW, Clements ACA, Brooker S. 2010. Optimal survey designs for targeting chemotherapy against soil-transmitted helminths: effect of spatial heterogeneity and cost-efficiency of sampling. Am J Trop Med Hyg, 82 (6), pp. 1079-1087. | Show Abstract | Read more

Implementation of helminth control programs requires information on the distribution and prevalence of infection to target mass treatment to areas of greatest need. In the absence of data, the question of how many schools/communities should be surveyed depends on the spatial heterogeneity of infection and the cost efficiency of surveys. We used geostatistical techniques to quantify the spatial heterogeneity of soil-transmitted helminths in multiple settings in eastern Africa, and using the example of Kenya, conducted conditional simulation to explore the implications of alternative sampling strategies in identifying districts requiring mass treatment. Cost analysis is included in the simulations using data from actual field surveys and control programs. The analysis suggests that sampling four or five schools in each district provides a cost-efficient strategy in identifying districts requiring mass treatment, and that efficiency of sampling was relatively insensitive to the number of children sampled per school.

Wardrop NA, Atkinson PM, Gething PW, Fèvre EM, Picozzi K, Kakembo ASL, Welburn SC. 2010. Bayesian geostatistical analysis and prediction of Rhodesian human African trypanosomiasis. PLoS Negl Trop Dis, 4 (12), pp. e914. | Show Abstract | Read more

BACKGROUND: The persistent spread of Rhodesian human African trypanosomiasis (HAT) in Uganda in recent years has increased concerns of a potential overlap with the Gambian form of the disease. Recent research has aimed to increase the evidence base for targeting control measures by focusing on the environmental and climatic factors that control the spatial distribution of the disease. OBJECTIVES: One recent study used simple logistic regression methods to explore the relationship between prevalence of Rhodesian HAT and several social, environmental and climatic variables in two of the most recently affected districts of Uganda, and suggested the disease had spread into the study area due to the movement of infected, untreated livestock. Here we extend this study to account for spatial autocorrelation, incorporate uncertainty in input data and model parameters and undertake predictive mapping for risk of high HAT prevalence in future. MATERIALS AND METHODS: Using a spatial analysis in which a generalised linear geostatistical model is used in a Bayesian framework to account explicitly for spatial autocorrelation and incorporate uncertainty in input data and model parameters we are able to demonstrate a more rigorous analytical approach, potentially resulting in more accurate parameter and significance estimates and increased predictive accuracy, thereby allowing an assessment of the validity of the livestock movement hypothesis given more robust parameter estimation and appropriate assessment of covariate effects. RESULTS: Analysis strongly supports the theory that Rhodesian HAT was imported to the study area via the movement of untreated, infected livestock from endemic areas. The confounding effect of health care accessibility on the spatial distribution of Rhodesian HAT and the linkages between the disease's distribution and minimum land surface temperature have also been confirmed via the application of these methods. CONCLUSIONS: Predictive mapping indicates an increased risk of high HAT prevalence in the future in areas surrounding livestock markets, demonstrating the importance of livestock trading for continuing disease spread. Adherence to government policy to treat livestock at the point of sale is essential to prevent the spread of sleeping sickness in Uganda.

Wardrop NA, Atkinson PM, Gething PW, Fèvre EM, Picozzi K, Kakembo ASL, Welburn SC. 2010. Bayesian geostatistical analysis and prediction of rhodesian human African trypanosomiasis PLoS Neglected Tropical Diseases, 4 (12), pp. 1-10. | Show Abstract | Read more

Background: The persistent spread of Rhodesian human African trypanosomiasis (HAT) in Uganda in recent years has increased concerns of a potential overlap with the Gambian form of the disease. Recent research has aimed to increase the evidence base for targeting control measures by focusing on the environmental and climatic factors that control the spatial distribution of the disease. Objectives:One recent study used simple logistic regression methods to explore the relationship between prevalence of Rhodesian HAT and several social, environmental and climatic variables in two of the most recently affected districts of Uganda, and suggested the disease had spread into the study area due to the movement of infected, untreated livestock. Here we extend this study to account for spatial autocorrelation, incorporate uncertainty in input data and model parameters and undertake predictive mapping for risk of high HAT prevalence in future. Materials and Methods: Using a spatial analysis in which a generalised linear geostatistical model is used in a Bayesian framework to account explicitly for spatial autocorrelation and incorporate uncertainty in input data and model parameters we are able to demonstrate a more rigorous analytical approach, potentially resulting in more accurate parameter and significance estimates and increased predictive accuracy, thereby allowing an assessment of the validity of the livestock movement hypothesis given more robust parameter estimation and appropriate assessment of covariate effects. Results:Analysis strongly supports the theory that Rhodesian HAT was imported to the study area via the movement of untreated, infected livestock from endemic areas. The confounding effect of health care accessibility on the spatial distribution of Rhodesian HAT and the linkages between the disease's distribution and minimum land surface temperature have also been confirmed via the application of these methods. Conclusions: Predictive mapping indicates an increased risk of high HAT prevalence in the future in areas surrounding livestock markets, demonstrating the importance of livestock trading for continuing disease spread. Adherence to government policy to treat livestock at the point of sale is essential to prevent the spread of sleeping sickness in Uganda. © 2010 Wardrop et al.

Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW. 2009. The risks of malaria infection in Kenya in 2009. BMC Infect Dis, 9 (1), pp. 180. | Show Abstract | Read more

BACKGROUND: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. METHODS: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 x 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. RESULTS: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be > or =40% and were largely located around the shores of Lake Victoria. CONCLUSION: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years.

Patil AP, Okiro EA, Gething PW, Guerra CA, Sharma SK, Snow RW, Hay SI. 2009. Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation. Malar J, 8 (1), pp. 186. | Show Abstract | Read more

BACKGROUND: Clinical malaria has proven an elusive burden to enumerate. Many cases go undetected by routine disease recording systems. Epidemiologists have, therefore, frequently defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical incidence of malaria longitudinally is labour-intensive and impossible to undertake universally. There is a need, therefore, to define a relationship between clinical incidence and the easier and more commonly measured index of infection prevalence: the "parasite rate". This relationship can help provide an informed basis to define malaria burdens in areas where health statistics are inadequate. METHODS: Formal literature searches were conducted for Plasmodium falciparum malaria incidence surveys undertaken prospectively through active case detection at least every 14 days. The data were abstracted, standardized and geo-referenced. Incidence surveys were time-space matched with modelled estimates of infection prevalence derived from a larger database of parasite prevalence surveys and modelling procedures developed for a global malaria endemicity map. Several potential relationships between clinical incidence and infection prevalence were then specified in a non-parametric Gaussian process model with minimal, biologically informed, prior constraints. Bayesian inference was then used to choose between the candidate models. RESULTS: The suggested relationships with credible intervals are shown for the Africa and a combined America and Central and South East Asia regions. In both regions clinical incidence increased slowly and smoothly as a function of infection prevalence. In Africa, when infection prevalence exceeded 40%, clinical incidence reached a plateau of 500 cases per thousand of the population per annum. In the combined America and Central and South East Asia regions, this plateau was reached at 250 cases per thousand of the population per annum. A temporal volatility model was also incorporated to facilitate a closer description of the variance in the observed data. CONCLUSION: It was possible to model a relationship between clinical incidence and P. falciparum infection prevalence but the best-fit models were very noisy reflecting the large variance within the observed opportunistic data sample. This continuous quantification allows for estimates of the clinical burden of P. falciparum of known confidence from wherever an estimate of P. falciparum prevalence is available.

Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, Kabaria CW, Manh BH, Elyazar IRF, Brooker S et al. 2009. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med, 6 (3), pp. e1000048. | Show Abstract | Read more

BACKGROUND: Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS: A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. CONCLUSIONS: High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process.

Cited:

33

European Pubmed Central

Noor AM, Alegana VA, Gething PW, Snow RW. 2009. A spatial national health facility database for public health sector planning in Kenya in 2008. Int J Health Geogr, 8 (1), pp. 13. | Show Abstract | Read more

BACKGROUND: Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. METHODS: A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. FINDINGS: The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. CONCLUSION: We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has resulted in significant increases in geographic access although several areas of the country need further improvements. This information is key to future planning and with this paper we have released the digital spatial database in the public domain to assist the Kenyan Government and its partners in the health sector.

Cited:

75

Scopus

Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW. 2009. The risks of malariainfection in Kenya in 2009 BMC Infectious Diseases, 9 | Show Abstract | Read more

Background: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. Methods: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10at a 1 × 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. Results: A total of 2,682 estimates of PfPR2-10from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10was predicted to be ≥40% and were largely located around the shores of Lake Victoria. Conclusion: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years. © 2009 Noor et al; licensee BioMed Central Ltd.

Batchelor NA, Atkinson PM, Gething PW, Picozzi K, Fèvre EM, Kakembo ASL, Welburn SC. 2009. Spatial predictions of Rhodesian Human African Trypanosomiasis (sleeping sickness) prevalence in Kaberamaido and Dokolo, two newly affected districts of Uganda. PLoS Negl Trop Dis, 3 (12), pp. e563. | Show Abstract | Read more

The continued northwards spread of Rhodesian sleeping sickness or Human African Trypanosomiasis (HAT) within Uganda is raising concerns of overlap with the Gambian form of the disease. Disease convergence would result in compromised diagnosis and treatment for HAT. Spatial determinants for HAT are poorly understood across small areas. This study examines the relationships between Rhodesian HAT and several environmental, climatic and social factors in two newly affected districts, Kaberamaido and Dokolo. A one-step logistic regression analysis of HAT prevalence and a two-step logistic regression method permitted separate analysis of both HAT occurrence and HAT prevalence. Both the occurrence and prevalence of HAT were negatively correlated with distance to the closest livestock market in all models. The significance of distance to the closest livestock market strongly indicates that HAT may have been introduced to this previously unaffected area via the movement of infected, untreated livestock from endemic areas. This illustrates the importance of the animal reservoir in disease transmission, and highlights the need for trypanosomiasis control in livestock and the stringent implementation of regulations requiring the treatment of cattle prior to sale at livestock markets to prevent any further spread of Rhodesian HAT within Uganda.

Noor AM, Clements ACA, Gething PW, Moloney G, Borle M, Shewchuk T, Hay SI, Snow RW. 2008. Spatial prediction of Plasmodium falciparum prevalence in Somalia. Malar J, 7 (1), pp. 159. | Show Abstract | Read more

BACKGROUND: Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. METHODS: Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. RESULTS: For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with > or = 5% prevalence were predominantly in the south. CONCLUSION: The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.

Gething PW, Noor AM, Gikandi PW, Hay SI, Nixon MS, Snow RW, Atkinson PM. 2008. Developing geostatistical space-time models to predict outpatient treatment burdens from incomplete national data. Geogr Anal, 40 (2), pp. 167-188. | Show Abstract | Read more

Basic health system data such as the number of patients utilising different health facilities and the types of illness for which they are being treated are critical for managing service provision. These data requirements are generally addressed with some form of national Health Management Information System (HMIS) which coordinates the routine collection and compilation of data from national health facilities. HMIS in most developing countries are characterised by widespread under-reporting. Here we present a method to adjust incomplete data to allow prediction of national outpatient treatment burdens. We demonstrate this method with the example of outpatient treatments for malaria within the Kenyan HMIS. Three alternative modelling frameworks were developed and tested in which space-time geostatistical prediction algorithms were used to predict the monthly tally of treatments for presumed malaria cases (MC) at facilities where such records were missing. Models were compared by a cross-validation exercise and the model found to most accurately predict MC incorporated available data on the total number of patients visiting each facility each month. A space-time stochastic simulation framework to accompany this model was developed and tested in order to provide estimates of both local and regional prediction uncertainty. The level of accuracy provided by the predictive model, and the accompanying estimates of uncertainty around the predictions, demonstrate how this tool can mitigate the uncertainties caused by missing data, substantially enhancing the utility of existing HMIS data to health-service decision-makers.

Noor AM, Alegana VA, Gething PW, Tatem AJ, Snow RW. 2008. Using remotely sensed night-time light as a proxy for poverty in Africa. Popul Health Metr, 6 (1), pp. 5. | Show Abstract | Read more

BACKGROUND: Population health is linked closely to poverty. To assess the effectiveness of health interventions it is critical to monitor the spatial and temporal changes in the health indicators of populations and outcomes across varying levels of poverty. Existing measures of poverty based on income, consumption or assets are difficult to compare across geographic settings and are expensive to construct. Remotely sensed data on artificial night time lights (NTL) have been shown to correlate with gross domestic product in developed countries. METHODS: Using national household survey data, principal component analysis was used to compute asset-based poverty indices from aggregated household asset variables at the Administrative 1 level (n = 338) in 37 countries in Africa. Using geographical information systems, mean brightness of and distance to NTL pixels and proportion of area covered by NTL were computed for each Administrative1 polygon. Correlations and agreement of asset-based indices and the three NTL metrics were then examined in both continuous and ordinal forms. RESULTS: At the Administrative 1 level all the NTL metrics distinguished between the most poor and least poor quintiles with greater precision compared to intermediate quintiles. The mean brightness of NTL, however, had the highest correlation coefficient with the asset-based wealth index in continuous (Pearson correlation = 0.64, p < 0.01) and ordinal (Spearman correlation = 0.79, p < 0.01; Kappa = 0.64) forms. CONCLUSION: Metrics of the brightness of NTL data offer a robust and inexpensive alternative to asset-based poverty indices derived from survey data at the Administrative 1 level in Africa. These could be used to explore economic inequity in health outcomes and access to health interventions at sub-national levels where household assets data are not available at the required resolution.

Gething PW, Noor AM, Goodman CA, Gikandi PW, Hay SI, Sharif SK, Atkinson PM, Snow RW. 2007. Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics. BMC Med, 5 (1), pp. 37. | Show Abstract | Read more

BACKGROUND: Most Ministries of Health across Africa invest substantial resources in some form of health management information system (HMIS) to coordinate the routine acquisition and compilation of monthly treatment and attendance records from health facilities nationwide. Despite the expense of these systems, poor data coverage means they are rarely, if ever, used to generate reliable evidence for decision makers. One critical weakness across Africa is the current lack of capacity to effectively monitor patterns of service use through time so that the impacts of changes in policy or service delivery can be evaluated. Here, we present a new approach that, for the first time, allows national changes in health service use during a time of major health policy change to be tracked reliably using imperfect data from a national HMIS. METHODS: Monthly attendance records were obtained from the Kenyan HMIS for 1 271 government-run and 402 faith-based outpatient facilities nationwide between 1996 and 2004. A space-time geostatistical model was used to compensate for the large proportion of missing records caused by non-reporting health facilities, allowing robust estimation of monthly and annual use of services by outpatients during this period. RESULTS: We were able to reconstruct robust time series of mean levels of outpatient utilisation of health facilities at the national level and for all six major provinces in Kenya. These plots revealed reliably for the first time a period of steady nationwide decline in the use of health facilities in Kenya between 1996 and 2002, followed by a dramatic increase from 2003. This pattern was consistent across different causes of attendance and was observed independently in each province. CONCLUSION: The methodological approach presented can compensate for missing records in health information systems to provide robust estimates of national patterns of outpatient service use. This represents the first such use of HMIS data and contributes to the resurrection of these hugely expensive but underused systems as national monitoring tools. Applying this approach to Kenya has yielded output with immediate potential to enhance the capacity of decision makers in monitoring nationwide patterns of service use and assessing the impact of changes in health policy and service delivery.

Gething P, Atkinson P, Noor A, Gikandi P, Hay S, Nixon M. 2007. A local space-time kriging approach applied to a national outpatient malaria dataset. Comput Geosci, 33 (10), pp. 1337-1350. | Show Abstract | Read more

Increases in the availability of reliable health data are widely recognised as essential for efforts to strengthen health-care systems in resource-poor settings worldwide. Effective health-system planning requires comprehensive and up-to-date information on a range of health metrics and this requirement is generally addressed by a Health Management Information System (HMIS) that coordinates the routine collection of data at individual health facilities and their compilation into national databases. In many resource-poor settings, these systems are inadequate and national databases often contain only a small proportion of the expected records. In this paper we take an important health metric in Kenya (the proportion of outpatient treatments for malaria, MP) from the national HMIS database and predict the values of MP at facilities where monthly records are missing. The available MP data were densely distributed across a spatiotemporal domain and displayed second-order heterogeneity. We used three different kriging methodologies to make cross-validation predictions of MP in order to test the effect on prediction accuracy of (a) the extension of a spatial-only to a space-time prediction approach, and (b) the replacement of a globally-stationary with a locally-varying random function model. Space-time kriging was found to produce predictions with 98.4% less mean bias and 14.8% smaller mean imprecision than conventional spatial-only kriging. A modification of space-time kriging that allowed space-time variograms to be recalculated for every prediction location within a spatially-local neighbourhood resulted in a larger decrease in mean imprecision over ordinary kriging (18.3%) although mean bias was reduced less (87.5%).

Cited:

21

Scopus

Atkinson PM, Foody GM, Gething PW, Mathur A, Kelly CK. 2007. Investigating spatial structure in specific tree species in ancient semi-natural woodland using remote sensing and marked point pattern analysis ECOGRAPHY, 30 (1), pp. 88-104. | Show Abstract | Read more

Remote sensing classification has the potential to provide important information, such as tree species distribution maps, to ecologists, at a range of spatial and temporal scales. However, standard classification procedures often fail to provide the high accuracies required for many ecological applications. Previously, a modified remote sensing classification technique was used to provide very high classification accuracies for one or two classes (e.g. species) of interest. The aim of this paper was to demonstrate that the output from the method can be suitable for spatial ecological analyses, and to provide a generic simulation framework for assessing the adequacy of any given remote sensing classification for such analyses. Marked point pattern analysis (MPPA) was applied to tree species distribution data obtained for sycamore Acer pseudoplatanus and ash Fraxinus excelsior from a 400 ha ancient semi-natural woodland in southern England using the modified remote sensing classification method to test several hypotheses of ecological interest relating to the spatial distribution and interaction of these species. Monte Carlo simulation methods were then used to evaluate the data and data quality requirements of the MPPA to check that the classified tree species maps for sycamore and ash were adequate. Using the combined method the spatial distributions for sycamore and ash were found to be aggregated and inter-dependent at a range of spatial scales. Together, the remote sensing classification and simulation approaches provide the basis for exploiting more fully the potential of remote sensing to provide information of value to ecologists. © Ecography.

Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, Nixon MS, Snow RW, Atkinson PM. 2006. Improving imperfect data from health management information systems in Africa using space-time geostatistics. PLoS Med, 3 (6), pp. e271. | Show Abstract | Read more

BACKGROUND: Reliable and timely information on disease-specific treatment burdens within a health system is critical for the planning and monitoring of service provision. Health management information systems (HMIS) exist to address this need at national scales across Africa but are failing to deliver adequate data because of widespread underreporting by health facilities. Faced with this inadequacy, vital public health decisions often rely on crudely adjusted regional and national estimates of treatment burdens. METHODS AND FINDINGS: This study has taken the example of presumed malaria in outpatients within the largely incomplete Kenyan HMIS database and has defined a geostatistical modelling framework that can predict values for all data that are missing through space and time. The resulting complete set can then be used to define treatment burdens for presumed malaria at any level of spatial and temporal aggregation. Validation of the model has shown that these burdens are quantified to an acceptable level of accuracy at the district, provincial, and national scale. CONCLUSIONS: The modelling framework presented here provides, to our knowledge for the first time, reliable information from imperfect HMIS data to support evidence-based decision-making at national and sub-national levels.

Noor AM, Amin AA, Gething PW, Atkinson PM, Hay SI, Snow RW. 2006. Modelling distances travelled to government health services in Kenya. Trop Med Int Health, 11 (2), pp. 188-196. | Show Abstract | Read more

OBJECTIVE: To systematically evaluate descriptive measures of spatial access to medical treatment, as part of the millennium development goals to reduce the burden of HIV/AIDS, tuberculosis and malaria. METHODS: We obtained high-resolution spatial and epidemiological data on health services, population, transport network, topography, land cover and paediatric fever treatment in four Kenyan districts to develop access and use models for government health services in Kenya. Community survey data were used to model use of government health services by febrile children. A model based on the transport network was then implemented and adjusted for actual use patterns. We compared the predictive accuracy of this refined model to that of Euclidean distance metrics. RESULTS Higher-order facilities were more attractive to patients (54%, 58% and 60% in three scenarios) than lower-order ones. The transport network model, adjusted for competition between facilities, was most accurate and selected as the best-fit model. It estimated that 63% of the population of the study districts were within the 1 h national access benchmark, against 82% estimated by the Euclidean model. CONCLUSIONS: Extrapolating the results from the best-fit model in study districts to the national level shows that approximately six million people are currently incorrectly estimated to have access to government health services within 1 h. Simple Euclidean distance assumptions, which underpin needs assessments and against which millennium development goals are evaluated, thus require reconsideration.

Cited:

70

Scopus

Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, Nixon MS, Snow RW, Atkinson PM. 2006. Improving imperfect data from health management information systems in Africa using space-time geostatistics PLoS Medicine, 3 (6), pp. 0825-0831. | Show Abstract | Read more

Background: Reliable and timely information on disease-specific treatment burdens within a health system is critical for the planning and monitoring of service provision. Health management information systems (HMIS) exist to address this need at national scales across Africa but are failing to deliver adequate data because of widespread underreporting by health facilities. Faced with this inadequacy, vital public health decisions often rely on crudely adjusted regional and national estimates of treatment burdens. Methods and Findings: This study has taken the example of presumed malaria in outpatients within the largely incomplete Kenyan HMIS database and has defined a geostatistical modelling framework that can predict values for all data that are missing through space and time. The resulting complete set can then be used to define treatment burdens for presumed malaria at any level of spatial and temporal aggregation. Validation of the model has shown that these burdens are quantified to an acceptable level of accuracy at the district, provincial, and national scale. Conclusions: The modelling framework presented here provides, to our knowledge for the first time, reliable information from imperfect HMIS data to support evidence-based decision-making at national and sub-national levels. © 2006 Gething et al.

Cited:

23

Scopus

Foody GM, Atkinson PM, Gething PW, Ravenhill NA, Kelly CK. 2005. Identification of specific tree species in ancient semi-natural woodland from digital aerial sensor imagery ECOLOGICAL APPLICATIONS, 15 (4), pp. 1233-1244. | Show Abstract | Read more

Remote sensing has great potential as a source of information on tree species. The classification approaches used commonly to extract species information from remotely sensed imagery typically aim to optimize the overall accuracy of species identification, a target which need not satisfy the requirements of a particular user. Often users are interested in a specific species or subset of species, and these may not be accurately identified in a conventional classification. Here, a two-phase classification approach was used to map specific species from aerial sensor imagery of an ancient British woodland. Particular attention was focused on the identification of sycamore since this is displacing the native ash and information on its distribution would enhance basic understanding and management activities. The results show that the classification approach can be adapted to focus on a specific species of interest and used to increase classification accuracy significantly. For example, sycamore was classified to a low accuracy when a conventional approach to classification with a neural network was used (46.6-63.6%, depending on perspective), but the adoption of the two-phase approach increased its accuracy significantly (82.3-93.3%). The results demonstrate the ability to map specific class(es) of interest accurately from remotely sensed imagery. The approach used also highlights the ability to tailor an analysis to the specific requirements of the ecological study in hand and is of broad applicability. © 2005 by the Ecological Society of America.

Gething PW, Noor AM, Zurovac D, Atkinson PM, Hay SI, Nixon MS, Snow RW. 2004. Empirical modelling of government health service use by children with fevers in Kenya. Acta Trop, 91 (3), pp. 227-237. | Show Abstract | Read more

An understanding of spatial patterns of health facility use allows a more informed approach to the modelling of catchment populations. In the absence of patient use data, an intuitive and commonly used approach to the delineation of facility catchment areas is Thiessen polygons. This study presents a series of methods by which the validity of these assumptions can be tested directly and hence the suitability of a Thiessen polygon catchment model explicitly assessed. These methods are applied to paediatric out-patient origin data from a sample of 81 government health facilities in four districts of Kenya. A geographical information system was used to predict the location of the catchment boundary along a transect between each pair of neighbouring facilities based on patient choice patterns. The mean location of boundaries between facilities of different type was found to be significantly displaced from the Thiessen boundary towards the lower-order facility. The affect of distance on within-catchment utilization rate was assessed by using exclusion buffers to remove the effect of neighbouring facilities. Utilization rate was found to exhibit a slight but steady decrease with distance up to 6 km from a facility. The accuracy of the future modelling of unsampled facility catchments can be increased by the incorporation of these trends.

Epidemiology and public health significance of the Plasmodium ovale and Plasmodium malariae malaria species

The ambitious international commitment towards eradicating malaria by 2040 requires highly efficacious and optimally targeted interventions. The diversity of human Plasmodium parasite species complicates this, requiring species-specific approaches which are adapted to their underlying biology, pathology and epidemiology. Although these characteristics are relatively well known for Plasmodium falciparum and Plasmodium vivax, other human malaria species – Plasmodium ovale and Plasmodium malariae ...

View project

2867

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk