Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A search for charge-parity (CP) violation in D^{0}→K^{-}K^{+} and D^{0}→π^{-}π^{+} decays is reported, using pp collision data corresponding to an integrated luminosity of 5.9  fb^{-1} collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in D^{*}(2010)^{+}→D^{0}π^{+} decays or from the charge of the muon in B[over ¯]→D^{0}μ^{-}ν[over ¯]_{μ}X decays. The difference between the CP asymmetries in D^{0}→K^{-}K^{+} and D^{0}→π^{-}π^{+} decays is measured to be ΔA_{CP}=[-18.2±3.2(stat)±0.9(syst)]×10^{-4} for π-tagged and ΔA_{CP}=[-9±8(stat)±5(syst)]×10^{-4} for μ-tagged D^{0} mesons. Combining these with previous LHCb results leads to ΔA_{CP}=(-15.4±2.9)×10^{-4}, where the uncertainty includes both statistical and systematic contributions. The measured value differs from zero by more than 5 standard deviations. This is the first observation of CP violation in the decay of charm hadrons.

Original publication

DOI

10.1103/physrevlett.122.211803

Type

Journal article

Journal

Physical review letters

Publication Date

05/2019

Volume

122

Addresses

Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands.

Keywords

LHCb Collaboration