Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractThe COVID-19 pandemic was a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Pandemics could be prevented in principle by accessible, easily deployable broad-spectrum oral antivirals. Here we report the results of theCOVID Moonshot, a fully open-science, crowd sourced, structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical series that is differentiated from current Mpro inhibitors in that it maintains a new non-covalent, non-peptidic scaffold with nanomolar potency. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations and high-throughput chemistry. In the process, we generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>840 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

Original publication




Journal article

Publication Date