Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SRRM2 encodes a splicing factor recently implicated in developmental disorders due to a statistical enrichment of de novo mutations. Using data from the 100,000 Genomes Project, four unrelated individuals with intellectual disability (ID) were identified, each harbouring de novo whole gene deletions of SRRM2. Deletions ranged between 248 and 482 kb in size and all distal breakpoints clustered within a complex 144 kb palindrome situated 75 kb upstream of SRRM2. Strikingly, three of the deletions were complex, with inverted internal segments of 45-94 kb. In one proband-mother duo, de novo status was inferred by haplotype analysis. Together with two additional patients who harboured smaller predicted protein-truncating variants (p.Arg632 ∗ and p.Ala2223Leufs ∗ 13), we estimate the prevalence of this condition in cohorts of patients with unexplained ID to be ~1/1300. Phenotypic blending, present for two cases with additional pathogenic variants in CASR/PKD1 and SLC17A5, hampered the phenotypic delineation of this recently described condition. Our data highlights the benefits of genome sequencing for resolving structural complexity and inferring de novo status. The genomic architecture of 16p13.3 may give rise to relatively high rates of complex rearrangements, adding to the list of loci associated with recurrent genomic disorders.

Original publication

DOI

10.1155/2023/6633248

Type

Journal article

Journal

Human Mutation

Publisher

Hindawi Limited

Publication Date

11/04/2023

Volume

2023

Pages

1 - 9