Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: The provirus integration site for Moloney murine leukemia virus 1 (Pim-1) kinase is overexpressed in various tumors and has been linked to poor prognosis. Its role as proto-oncogene is based on several Pim-1 target proteins involved in pivotal cellular processes. Here, we explore the functional relevance of Pim-1 in colon carcinoma. EXPERIMENTAL DESIGN: RNAi-based knockdown approaches, as well as a specific small molecule inhibitor, were used to inhibit Pim-1 in colon carcinoma cells. The effects were analyzed regarding proliferation, apoptosis, sensitization toward cytostatic treatment, and overall antitumor effect in vitro and in mouse tumor models in vivo. RESULTS: We demonstrate antiproliferative, proapoptotic, and overall antitumor effects of Pim-1 inhibition. The sensitization to 5-fluorouracil (5-FU) treatment upon Pim-1 knockdown offers new possibilities for combinatorial treatment approaches. Importantly, this also antagonizes a 5-FU-triggered Pim-1 up-regulation, which is mediated by decreased levels of miR-15b, a microRNA we newly identify to regulate Pim-1. The analysis of the molecular effects of Pim-1 inhibition reveals a complex regulatory network, with therapeutic Pim-1 repression leading to major changes in oncogenic signal transduction with regard to p21(Cip1/WAF1), STAT3, c-jun-N-terminal kinase (JNK), c-Myc, and survivin and in the levels of apoptosis-related proteins Puma, Bax, and Bcl-xL. CONCLUSIONS: We demonstrate that Pim-1 plays a pivotal role in several tumor-relevant signaling pathways and establish the functional relevance of Pim-1 in colon carcinoma. Our results also substantiate the RNAi-mediated Pim-1 knockdown based on polymeric polyethylenimine/small interfering RNA nanoparticles as a promising therapeutic approach.

Type

Journal article

Journal

Neoplasia

Publication Date

07/2013

Volume

15

Pages

783 - 794

Keywords

Animals, Antineoplastic Agents, Apoptosis, Cell Line, Tumor, Cell Proliferation, Colonic Neoplasms, Disease Models, Animal, Drug Resistance, Neoplasm, Fluorouracil, Gene Expression Regulation, Neoplastic, Gene Knockdown Techniques, Humans, Mice, MicroRNAs, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-pim-1, RNA, Small Interfering, Signal Transduction, Xenograft Model Antitumor Assays