Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background/Objectives: Carbapenemase-producing Enterobacteriaceae (CPE) are a public health threat, and have been found in humans, animals and the environment. Carbapenems are not authorized for use in EU or UK companion animals, and the prevalence of carbapenem-resistant Gram-negative bacilli (CRGNB) in this population is unknown. Methods: We investigated CRGNB isolated from animal specimens received by one diagnostic laboratory from 34 UK veterinary practices (September 2015-December 2016). Any Gram-negative isolates from clinical specimens showing reduced susceptibility to fluoroquinolones and/or aminoglycosides and/or cephalosporins were investigated phenotypically and genotypically for carbapenemases. A complete genome assembly (Illumina/Nanopore) was generated for the single isolate identified to investigate the genetic context for carbapenem resistance. Results: One ST410 Escherichia coli isolate [(CARB35); 1/191, 0.5%], cultured from a wound in a springer spaniel, harboured a known carbapenem resistance gene (blaNDM-5). The gene was located in the chromosome on an integrated 100 kb IncF plasmid, also harbouring other drug resistance genes (mrx, sul1, ant1 and dfrA). The isolate also contained blaCMY-42 and blaTEM-190 on two separate plasmids (IncI1 and IncFII, respectively) that showed homology with other publicly available plasmid sequences from Italy and Myanmar. Conclusions: Even though the use of carbapenems in companion animals is restricted, the concurrent presence of blaCMY-42 and other antimicrobial resistance genes could lead to co-selection of carbapenemase genes in this population. Further studies investigating the selection and flow of plasmids carrying important resistance genes amongst humans and companion animals are needed.

Original publication

DOI

10.1093/jac/dkz017

Type

Journal article

Journal

J Antimicrob Chemother

Publication Date

06/02/2019