Christopher Yau

Associate Professor

The focus of my group is the development of computational statistical methods for applications in genetics and genomics. The main areas of work include:

  • Translational Computational Oncogenomics. The development of cutting edge computational statistical methods and tools that can be widely used by specialists and non-specialists alike for research and clinical practice in cancer.
  • Single Cell Informatics. Developing novel statistical techniques for single cell genomics.
  • Data-driven Statistics. Developing novel statistical ideas and generic techniques that are inspired by real data analysis problems in genetics and genomics. Developing computational techniques formulated on sound statistical principals for the the analysis of very large datasets commonly found in genomics (Big Data) and learning biologically relevant features (Deep or Representation Learning).