Prof Helen McShane

Research Area: Immunology
Keywords: Tuberculosis, Vaccine, Immunisation and Clinical Trial
Web Links:
Vaccinating an infant in The Gambia

Vaccinating an infant in The Gambia

Meeting Queen Sophia of Spain, May 2014

Meeting Queen Sophia of Spain, May 2014

The HIV epidemic and the emergence of multi and extensively drug-resistant strains of Mycobacterium tuberculosis (M.tb) mean that global control of tuberculosis (TB), particularly adult pulmonary TB, remains inadequate. There is an urgent need for better control measures, and the most cost effective way to control any infectious disease epidemic is with effective vaccination. The current vaccine, BCG confers protection against disseminated disease in childhood, but does not reliably protect against pulmonary disease. A strong cell mediated immune response is essential for protective immunity. It is known that Class II-restricted CD4+ T cells are essential for protective immunity and that class I-restricted CD8+ T lymphocytes may play a role in maintaining the latent state. Other cell types, including gamma delta cells and Th17 cells may also play a role. Antibodies may have some role, particularly in prevention of infection.

Since 2002, my group has conducted a series of clinical trials in the UK, The Gambia, South Africa, Senegal and Uganda, to investigate the safety, immunogenicity and efficacy of candidate TB vaccines, including MVA85A (recombinant modified vaccinia Ankara expressing antigen 85A) and ChAdOx1 85A (chimp adenovirus expressing antigen 85A) (both developed at the Jenner), and a number of industry partners’ vaccines. MVA85A and ChAdOx1 85A are used as boost vaccines for BCG-primed subjects; heterologous prime-boost vaccination regimens provide an effective way to induce high levels of cellular immunity, while the inclusion of BCG in a new regimen allows the retention of the protective effects of BCG in childhood against severe disease. Both vaccines have been shown to be safe and immunogenic in healthy adult volunteers. MVA85A has been further studied in M.tb latently infected individuals, and HIV-infected individuals, and the vaccine is safe and immunogenic in these groups. Successful healthy adult clinical trials were followed by age de-escalation studies that demonstrated safety in children and infants.

MVA85A was the first new TB candidate vaccine to be evaluated in an efficacy trial since BCG was last tested in infants in the 1960s. The first efficacy trial, conducted from 2009-2012 in collaboration with the South African TB Vaccine Initiative (SATVI) and supported by Aeras and the Wellcome Trust, enrolled 2797 South African infants who were randomised to receive BCG alone at birth or BCG followed by MVA85A boost at 4-6 months of age. MVA85A vaccination was safe but did not improve upon BCG-induced protection.

 A second randomised, double-blind, placebo-controlled, efficacy trial has taken place in South Africa and Senegal in HIV-infected adults, with the collaboration of the University of Cape Town and CHU Le Dantec and support from Aeras and EDCTP. This trial started in 2011 and the 650 adults completed follow up in late 2014. Results are expected shortly.

A current area of interest to our group is whether delivering a TB vaccine via the aerosol route (through nebulisation directly into the lungs) is a more effective method of vaccination. In the last few years we have started clinical trials investigating aerosol delivery of MVA85A and have shown this route to be both safe and immunogenic. Other current projects within my group include the development of a BCG challenge model in humans, evaluating the effect of helminth infection on vaccine induced immune responses, and the evaluation of the protective efficacy of new antigens in viral vectors.

Name Department Institution Country
Dr Henry Bettinson Respiratory Medicine Churchill Hospital United Kingdom
Prof Keith Channon FMedSci FRCP (RDM) Cardiovascular Medicine University of Oxford United Kingdom
Prof Hazel Dockrell London School of Hygeine and Tropical Medicine United Kingdom
Prof Alexander (Hal) Drakesmith (RDM) Investigative Medicine Division University of Oxford United Kingdom
Prof Alison Elliott MRC Laboratories, Entebbe Uganda
Dr Tom Evans Aeras United States
Dr Helen A Fletcher University of Oxford United Kingdom
Prof Mark Hatherill South African TB Vaccine Initiative (SATVI), Cape Town South Africa
Prof Glyn Hewinson Jenner Institute University of Oxford United Kingdom
Prof Adrian VS Hill Jenner Institute University of Oxford United Kingdom
Dr Kris Huygen Belgian Scientific Institute for Public Health Belgium
Prof David Lewinsohn University of Oregon United States
Prof Souleymane MBoup University of Dakar Senegal
Prof Paul Moss University of Birmingham United Kingdom
Prof Tom Ottenhoff Department of Infectious Diseases Leiden University Netherlands
Dr Ann Rawkins Public Health England, Porton Down United Kingdom
Dr Sally Sharpe Public Health England, Porton Down United Kingdom
Dr Martin Vordermeier Jenner Institute University of Oxford United Kingdom
Prof Robert Wilkinson University of Cape Town South Africa

Sander CR, Pathan AA, Beveridge NE, Poulton I, Minassian A, Alder N, Van Wijgerden J, Hill AV et al. 2009. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med, 179 (8), pp. 724-733. Read abstract | Read more

An effective new tuberculosis (TB) vaccine regimen must be safe in individuals with latent TB infection (LTBI) and is a priority for global health care. Hide abstract

Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A et al. 2009. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One, 4 (4), pp. e5264. Read abstract | Read more

Continuous high global tuberculosis (TB) mortality rates and variable vaccine efficacy of Mycobacterium bovis Bacille Calmette-Guérin (BCG) motivate the search for better vaccine regimes. Relevant models are required to downselect the most promising vaccines entering clinical efficacy testing and to identify correlates of protection. Hide abstract

Beveridge NE, Fletcher HA, Hughes J, Pathan AA, Scriba TJ, Minassian A, Sander CR, Whelan KT et al. 2008. A comparison of IFNgamma detection methods used in tuberculosis vaccine trials. Tuberculosis (Edinb), 88 (6), pp. 631-640. Read abstract | Read more

Interferon gamma (IFNgamma) is a critical component of the pro-inflammatory immune response that provides protection against Mycobacterium tuberculosis. In the absence of an immunological correlate of protection, antigen-specific production of IFNgamma is a commonly used marker of a protective immune response. To facilitate the evaluation of tuberculosis candidate vaccines three different IFNgamma detection methods were compared. The cultured whole blood ELISA, ex vivo IFNgamma ELISpot and whole blood ex vivo intracellular cytokine staining (ICS) assays were performed head-to-head during a Phase I clinical trial using the candidate vaccine MVA85A. Whilst all three assays detected significant increases in IFNgamma production immediately following vaccination, distinctions between the assays were apparent. Higher baseline IFNgamma responses were detected using the cultured whole blood ELISA, whereas the ex vivo ELISpot assay was the most sensitive in detecting long-term (52 weeks) post-vaccination responses. The whole blood ex vivo ICS assay provided novel information by dissecting the IFNgamma response into responding CD4, CD8 and gamma/delta T cell subsets. Future tuberculosis vaccine trials and immunology studies should ideally include a combination of ex vivo and cultured assays to ensure a thorough and multifaceted evaluation of the immune response is achieved. Hide abstract

Fletcher HA, Pathan AA, Berthoud TK, Dunachie SJ, Whelan KT, Alder NC, Sander CR, Hill AV, McShane H. 2008. Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-beta1. Vaccine, 26 (41), pp. 5269-5275. Read abstract | Read more

In clinical trials recombinant-modified vaccinia virus Ankara expressing the Mycobacterium tuberculosis antigen 85A (MVA85A) induces approximately 10 times more effector T cells than any other recombinant MVA vaccine. We have found that in BCG primed subjects MVA85A vaccination reduces transforming growth factor beta 1 (TGF-beta1) mRNA in peripheral blood lymphocytes and reduces TGF-beta1 protein in the serum, but increases IFN-gamma ELISPOT responses to the recall antigen SK/SD. TGF-beta1 is essential for the generation of regulatory T cells and we see a correlation across vaccinees between CD4+CD25hiFoxP3+ cells and TGF-beta1 serum levels. This apparent ability to counteract regulatory T cell effects suggests a potential use of MVA85A as an adjuvant for less immunogenic vaccines. Hide abstract

Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S, Lang T, Veldsman A et al. 2008. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis, 198 (4), pp. 544-552. Read abstract | Read more

The efficacy of bacille Calmette-Guérin (BCG) may be enhanced by heterologous vaccination strategies that boost the BCG-primed immune response. One leading booster vaccine, MVA85A (where "MVA" denotes "modified vaccinia virus Ankara"), has shown promising safety and immunogenicity in human trials performed in the United Kingdom. We investigated the safety and immunogenicity of MVA85A in mycobacteria-exposed--but Mycobacterium tuberculosis-uninfected--healthy adults from a region of South Africa where TB is endemic. Hide abstract

Beveridge NE, Price DA, Casazza JP, Pathan AA, Sander CR, Asher TE, Ambrozak DR, Precopio ML et al. 2007. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol, 37 (11), pp. 3089-3100. Read abstract | Read more

In the search for effective vaccines against intracellular pathogens such as HIV, tuberculosis and malaria, recombinant viral vectors are increasingly being used to boost previously primed T cell responses. Published data have shown prime-boost vaccination with BCG-MVA85A (modified vaccinia virus Ankara expressing antigen 85A) to be highly immunogenic in humans as measured by ex vivo IFN-gamma ELISPOT. Here, we used polychromatic flow cytometry to investigate the phenotypic and functional profile of these vaccine-induced Mycobacterium tuberculosis (M.tb) antigen 85A-specific responses in greater detail. Promisingly, antigen 85A-specific CD4(+) T cells were found to be highly polyfunctional, producing IFN-gamma, TNF-alpha, IL-2 and MIP-1beta. Surface staining showed the responding CD4(+) T cells to be relatively immature (CD45RO(+) CD27(int)CD57(-)); this observation was supported by the robust proliferative responses observed following antigenic stimulation. Furthermore, these phenotypic and functional properties were independent of clonotypic composition and epitope specificity, which was maintained through the different phases of the vaccine-induced immune response. Overall, these data strongly support the use of MVA85A in humans as a boosting agent to expand polyfunctional M.tb-specific CD4(+) T cells capable of significant secondary responses. Hide abstract

Ibanga HB, Brookes RH, Hill PC, Owiafe PK, Fletcher HA, Lienhardt C, Hill AV, Adegbola RA, McShane H. 2006. Early clinical trials with a new tuberculosis vaccine, MVA85A, in tuberculosis-endemic countries: issues in study design. Lancet Infect Dis, 6 (8), pp. 522-528. Read abstract | Read more

Tuberculosis remains a substantial global health problem despite effective drug treatments. The efficacy of BCG, the only available vaccine, is variable, especially in tuberculosis-endemic regions. Recent advances in the development of new vaccines against tuberculosis mean that the first of these are now entering into early clinical trials. A recombinant modified vaccinia virus Ankara expressing a major secreted antigen from Mycobacterium tuberculosis, antigen 85A, was the first new tuberculosis vaccine to enter into clinical trials in September 2002. This vaccine is known as MVA85A. In a series of phase I clinical trials in the UK, MVA85A had an excellent safety profile and was highly immunogenic. MVA85A was subsequently evaluated in a series of phase I trials in The Gambia, a tuberculosis-endemic area in west Africa. This vaccine is the only new subunit tuberculosis vaccine to enter into clinical trials in Africa to date. Here, we discuss some of the issues that were considered in the protocol design of these studies including recruitment, inclusion and exclusion criteria, reimbursement of study participants, and HIV testing. These issues are highly relevant to early clinical trials with all new tuberculosis vaccines in the developing world. Hide abstract

McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, Fletcher HA, Hill AV. 2004. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med, 10 (11), pp. 1240-1244. Read abstract | Read more

Protective immunity against Mycobacterium tuberculosis depends on the generation of a T(H)1-type cellular immune response, characterized by the secretion of interferon-gamma (IFN-gamma) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4(+) and CD8(+) T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-gamma-secreting T cells when used alone in bacille Calmette-Guerin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5-38 years previously with BCG, substantially higher levels of antigen-specific IFN-gamma-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5-30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas. Hide abstract

Identifying new protective antigens for TB subunit vaccines

One leading approach to TB vaccine development is to develop a subunit booster vaccine, designed to boost the effects of the current vaccine, BCG. The selection of  antigen(s) to include in such a vaccine has been rather limited to date. We are collaborating with two antigen discovery groups within the field to select potential antigens to include in our viral vector delivery systems, and have some extremely promising results with the first four antigens tested. We are also exploring new ...

View project

51

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk