register interest

Professor Ian Tomlinson

Research Area: Genetics and Genomics
Technology Exchange: Chromosome mapping, Immunohistochemistry, SNP typing, Transcript profiling and Transgenesis
Scientific Themes: Cancer Biology and Genetics & Genomics
Keywords: Cancer genetics, Population genetics, Colorectal, Renal, Mouse models and Pseudo-hypoxia
Web Links:

  1. The identification of genes that predispose to colorectal and other cancers
  2. Functional genetics of colorectal tumorigenesis, with emphasis on the relative importance of selection and genomic instability.
  3. Genetic changes and mechanisms of tumorigenesis in renal tumours.

Name Department Institution Country
Professor Jenny Taylor Wellcome Trust Centre for Human Genetics University of Oxford United Kingdom
Professor Chris Holmes Wellcome Trust Centre for Human Genetics Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Dr Jean-Baptiste Cazier Wellcome Trust Centre for Human Genetics University of Oxford United Kingdom
Professor Simon Leedham Wellcome Trust Centre for Human Genetics Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Prof David Kerr CBE FMedSci FRCP (RDM) Nuffield Division of Clinical Laboratory Sciences University of Oxford United Kingdom
Dr Rachel Midgley (RDM) Oncology University of Oxford United Kingdom
Professor Jonathan M Grimes Structural Biology Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Carvajal-Carmona LG, Tomlinson I, Sahasrabudhe R. 2016. RE: HABP2 G534E Mutation in Familial Nonmedullary Thyroid Cancer. J Natl Cancer Inst, 108 (8), pp. djw108-djw108. | Read more

Wyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S, Zhang Y, Bolla MK et al. 2016. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet, | Show Abstract | Read more

Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following estrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR=0.68 95%CI 0.55-0.83, P=0.0002; replication OR=0.77 95%CI 0.73-0.82, P=2.1x10(-19)) and identify 13 additional linked variants (r(2)>0.8) in the 20Kb linkage block containing the enCNV (P=3.2x10(-15) - 5.6x10(-17)). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5.

Schmidt MK, Hogervorst F, van Hien R, Cornelissen S, Broeks A, Adank MA, Meijers H, Waisfisz Q et al. 2016. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J Clin Oncol, 34 (23), pp. 2750-2760. | Show Abstract | Read more

PURPOSE: CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS: CHEK2*1100delC genotyping was mostly done by a custom Taqman assay. Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS: Proportions of heterozygous CHEK2*1100delC carriers in controls, in patients with breast cancer from population- and hospital-based studies, and in patients with breast cancer from familial- and clinical genetics center-based studies were 0.5%, 1.3%, and 3.0%, respectively. The estimated OR for invasive breast cancer was 2.26 (95%CI, 1.90 to 2.69; P = 2.3 × 10(-20)). The OR was higher for estrogen receptor (ER)-positive disease (2.55 [95%CI, 2.10 to 3.10; P = 4.9 × 10(-21)]) than it was for ER-negative disease (1.32 [95%CI, 0.93 to 1.88; P = .12]; P interaction = 9.9 × 10(-4)). The OR significantly declined with attained age for breast cancer overall (P = .001) and for ER-positive tumors (P = .001). Estimated cumulative risks for development of ER-positive and ER-negative tumors by age 80 in CHEK2*1100delC carriers were 20% and 3%, respectively, compared with 9% and 2%, respectively, in the general population of the United Kingdom. CONCLUSION: These CHEK2*1100delC breast cancer risk estimates provide a basis for incorporating CHEK2*1100delC into breast cancer risk prediction models and into guidelines for intensified screening and follow-up.

Painter JN, Kaufmann S, O'Mara TA, Hillman KM, Sivakumaran H, Darabi H, Cheng TH, Pearson J et al. 2016. A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding. Am J Hum Genet, 98 (6), pp. 1159-1169. | Show Abstract | Read more

A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925 controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737. Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription factor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identification of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as chemopreventive agents in individuals at high risk of developing endometrial cancer.

Findlay JM, Middleton MR, Tomlinson I. 2016. Erratum to: Genetic Biomarkers of Barrett's Esophagus Susceptibility and Progression to Dysplasia and Cancer: A Systematic Review and Meta-Analysis. Dig Dis Sci, 61 (7), pp. 2145. | Show Abstract | Read more

© 2016, Springer Science+Business Media New York 2016.The license for this article has been changed from “CCBY- NC” to “CC-BY” at the author’s request

Cheng TH, Thompson DJ, O'Mara TA, Painter JN, Glubb DM, Flach S, Lewis A, French JD et al. 2016. Five endometrial cancer risk loci identified through genome-wide association analysis. Nat Genet, 48 (6), pp. 667-674. | Show Abstract | Read more

We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

Zhao Z, Wen W, Michailidou K, Bolla MK, Wang Q, Zhang B, Long J, Shu XO et al. 2016. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes Control, 27 (5), pp. 679-693. | Show Abstract | Read more

PURPOSE: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. METHODS: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. RESULTS: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92-0.95, p = 4.13E-13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02-1.06, p = 1.26E-05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95-0.99, p = 8.05E-04). CONCLUSIONS: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk.

Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2, Hollestelle A, van der Baan FH, Berchuck A, Johnatty SE, Aben KK, Agnarsson BA, Aittomäki K et al. 2016. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecol Oncol, 141 (2), pp. 386-401. | Show Abstract | Read more

OBJECTIVE: Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. METHODS: Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). RESULTS: We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. CONCLUSIONS: rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.

Carvajal Carmona LG, Tomlinson I. 2016. The Hunting of the Snark: Whither Genome-Wide Association Studies for Colorectal Cancer? Gastroenterology, 150 (7), pp. 1528-1530. | Read more

Shi J, Zhang Y, Zheng W, Michailidou K, Ghoussaini M, Bolla MK, Wang Q, Dennis J et al. 2016. Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. Int J Cancer, 139 (6), pp. 1303-1317. | Show Abstract | Read more

Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.

Stracquadanio G, Wang X, Wallace MD, Grawenda AM, Zhang P, Hewitt J, Zeron-Medina J, Castro-Giner F et al. 2016. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer, 16 (4), pp. 251-265. | Show Abstract | Read more

Decades of research have shown that mutations in the p53 stress response pathway affect the incidence of diverse cancers more than mutations in other pathways. However, most evidence is limited to somatic mutations and rare inherited mutations. Using newly abundant genomic data, we demonstrate that commonly inherited genetic variants in the p53 pathway also affect the incidence of a broad range of cancers more than variants in other pathways. The cancer-associated single nucleotide polymorphisms (SNPs) of the p53 pathway have strikingly similar genetic characteristics to well-studied p53 pathway cancer-causing somatic mutations. Our results enable insights into p53-mediated tumour suppression in humans and into p53 pathway-based cancer surveillance and treatment strategies.

Chen MM, O'Mara TA, Thompson DJ, Painter JN, Australian National Endometrial Cancer Study Group (ANECS), Attia J, Black A, Brinton L et al. 2016. GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer. Hum Mol Genet, pp. ddw092-ddw092. | Show Abstract | Read more

Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 (-) (8)) at 6p22.3 (rs1740828; P = 2.29 × 10 (-) (8), OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer.

Orlando G, Law PJ, Palin K, Tuupanen S, Gylfe A, Hänninen UA, Cajuso T, Tanskanen T et al. 2016. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Hum Mol Genet, pp. ddw087-ddw087. | Show Abstract | Read more

To identify new risk loci for colorectal cancer (CRC), we conducted a meta-analysis of seven genome-wide association studies (GWAS) with independent replication, totalling 13 656 CRC cases and 21 667 controls of European ancestry. The combined analysis identified a new risk association for CRC at 2q35 marked by rs992157 (P = 3.15 × 10(-8), odds ratio = 1.10, 95% confidence interval = 1.06-1.13), which is intronic to PNKD (paroxysmal non-kinesigenic dyskinesia) and TMBIM1 (transmembrane BAX inhibitor motif containing 1). Intriguingly this susceptibility single-nucleotide polymorphism (SNP) is in strong linkage disequilibrium (r(2 )=( )0.90, D' = 0.96) with the previously discovered GWAS SNP rs2382817 for inflammatory bowel disease (IBD). Following on from this observation we examined for pleiotropy, or shared genetic susceptibility, between CRC and the 200 established IBD risk loci, identifying an additional 11 significant associations (false discovery rate [FDR]) < 0.05). Our findings provide further insight into the biological basis of inherited genetic susceptibility to CRC, and identify risk factors that may influence the development of both CRC and IBD.

Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, Healey CS, Kar S et al. 2016. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet, 48 (4), pp. 374-386. | Show Abstract | Read more

We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.

Easton DF, Lesueur F, Decker B, Michailidou K, Li J, Allen J, Luccarini C, Pooley KA et al. 2016. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet, 53 (5), pp. 298-309. | Show Abstract | Read more

BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.

Meeks HD, Song H, Michailidou K, Bolla MK, Dennis J, Wang Q, Barrowdale D, Frost D et al. 2016. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 108 (2), pp. djv315-djv315. | Show Abstract | Read more

© The Author 2015. Published by Oxford University Press. All rights reserved.Background: The K3326X variant in BRCA2 (BRCA2∗c.9976A>T p.Lys3326∗rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormonerelated cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76637 cancer case patients and 83796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9×10-6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8×10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4×10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1×10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.

Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, Church DN. 2016. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer, 16 (2), pp. 71-81. | Show Abstract | Read more

Although it has long been recognized that the exonucleolytic proofreading activity intrinsic to the replicative DNA polymerases Pol δ and Pol ε is essential for faithful replication of DNA, evidence that defective DNA polymerase proofreading contributes to human malignancy has been limited. However, recent studies have shown that germline mutations in the proofreading domains of Pol δ and Pol ε predispose to cancer, and that somatic Pol ε proofreading domain mutations occur in multiple sporadic tumours, where they underlie a phenotype of 'ultramutation' and favourable prognosis. In this Review, we summarize the current understanding of the mechanisms and consequences of polymerase proofreading domain mutations in human malignancies, and highlight the potential utility of these variants as novel cancer biomarkers and therapeutic targets.

Thompson DJ, O'Mara TA, Glubb DM, Painter JN, Cheng T, Folkerd E, Doody D, Dennis J et al. 2016. CYP19A1 fine-mapping and Mendelian randomization: estradiol is causal for endometrial cancer. Endocr Relat Cancer, 23 (2), pp. 77-91. | Show Abstract | Read more

Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8×10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4×10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.

Chubb D, Broderick P, Dobbins SE, Frampton M, Kinnersley B, Penegar S, Price A, Ma YP et al. 2016. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun, 7 pp. 11883. | Show Abstract | Read more

Colorectal cancer (CRC) displays a complex pattern of inheritance. It is postulated that much of the missing heritability of CRC is enshrined in high-impact rare alleles, which are mechanistically and clinically important. In this study, we assay the impact of rare germline mutations on CRC, analysing high-coverage exome sequencing data on 1,006 early-onset familial CRC cases and 1,609 healthy controls, with additional sequencing and array data on up to 5,552 cases and 6,792 controls. We identify highly penetrant rare mutations in 16% of familial CRC. Although the majority of these reside in known genes, we identify POT1, POLE2 and MRE11 as candidate CRC genes. We did not identify any coding low-frequency alleles (1-5%) with moderate effect. Our study clarifies the genetic architecture of CRC and probably discounts the existence of further major high-penetrance susceptibility genes, which individually account for >1% of the familial risk. Our results inform future study design and provide a resource for contextualizing the impact of new CRC genes.

Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, Olswold C, Hallberg E et al. 2016. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun, 7 pp. 11375. | Show Abstract | Read more

Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

Kinnersley B, Chubb D, Dobbins SE, Frampton M, Buch S, Timofeeva MN, Castellví-Bel S, Farrington SM et al. 2016. Correspondence: SEMA4A variation and risk of colorectal cancer. Nat Commun, 7 pp. 10611. | Read more

Petridis C, Brook MN, Shah V, Kohut K, Gorman P, Caneppele M, Levi D, Papouli E et al. 2016. Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Res, 18 (1), pp. 22. | Show Abstract | Read more

BACKGROUND: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. METHODS: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. RESULTS: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10(-8). CONCLUSION: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist.

Dorman A, Baer D, Tomlinson I, Mott R, Iraqi FA. 2016. Genetic analysis of intestinal polyp development in Collaborative Cross mice carrying the Apc (Min/+) mutation. BMC Genet, 17 (1), pp. 46. | Show Abstract | Read more

BACKGROUND: Colorectal cancer is an abnormal tissue development in the colon or rectum. Most of CRCs develop due to somatic mutations, while only a small proportion is caused by inherited mutations. Familial adenomatous polyposis is an inherited genetic disease, which is characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli gene. Mice carrying and non-sense mutation in Adenomatous polyposis coli gene at site R850, which designated Apc (R850X/+) (Min), develop intestinal adenomas, while the bulk of the disease is in the small intestine. A number of genetic modifier loci of Min have been mapped, but so far most of the underlying genes have not been identified. In our previous studies, we have shown that Collaborative Cross mice are a powerful tool for mapping loci responsible for phenotypic variation. As a first step towards identification of novel modifiers of Min, we assessed the phenotypic variation between 27 F1 crosses between different Collaborative cross mice and C57BL/6-Min lines. RESULTS: Here, C57BL/6-Min male mice were mated with females from 27 Collaborative cross lines. F1 offspring were terminated at 23 weeks old and multiple phenotypes were collected: polyp counts, intestine length, intestine weight, packed cell volume and spleen weight. Additionally, in eight selected F1 Collaborative cross-C57BL/6-Min lines, body weight was monitored and compared to control mice carry wildtype Adenomatous polyposis coli gene. We found significant (p < 0.05) phenotypic variation between the 27 F1 Collaborative cross-C57BL/6-Min lines for all the tested phenotypes, and sex differences with traits; Colon, body weight and intestine length phenotypes, only. Heritability calculation showed that these phenotypes are mainly controlled by genetic factors. CONCLUSIONS: Variation in polyp development is controlled, an appreciable extent, by genetic factors segregating in the Collaborative cross population and suggests that it is suited for identifying modifier genes associated with Apc (Min/+) mutation, after assessing sufficient number of lines for quantitative trait loci analysis.

Sahasrabudhe R, Stultz J, Williamson J, Lott P, Estrada A, Bohorquez M, Palles C, Polanco-Echeverry G et al. 2015. The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J Clin Endocrinol Metab, 101 (3), pp. jc20153928. | Show Abstract | Read more

CONTEXT: A recent study reported the non-synonymous G534E (rs7080536, allele A) variant in the HABP2 gene as causal in familial non-medullary thyroid cancer (NMTC). OBJECTIVE: The objective of this study was to evaluate the causality of HABP2 G534E in the TCUKIN study, a multi-center population based study of NMTC cases from the British Isles. DESIGN AND SETTING: A case-control analysis of rs7080536 genotypes was performed using 2,105 TCUKIN cases and 5,172 UK controls. PARTICIPANTS: Cases comprised 2,105 NMTC cases. Patients sub-groups with papillary (N=1,056), follicular (N=691) and Hurthle cell (N=86) TC cases were studied separately. Controls comprised 5,172 individuals from the 1958 Birth Cohort (58C) and the National Blood Donor Service (NBS) study. The controls had previously been genotyped using genome-wide SNP arrays by the Wellcome Trust Case Control Consortium study. OUTCOME: Measures: Association between HABP2 G534E (rs7080536A) and NMTC risk was evaluated using logistic regression. RESULTS: The frequency of HABP2 G534E was 4.2% in cases and 4.6% in controls. We did not detect an association between this variant and NMTC risk (OR=0.896, 95% CI: 0.746-1.071, P=0.233). We also failed to detect an association between HABP2 G534E and cases with papillary (1056 cases, G534E frequency= 3.5%, OR=0.74, P=0.017), follicular (691 cases, G534E frequency= 4.7%, OR=1.00, P=1.000) or Hurthle cell (86 cases, G534E frequency= 6.3%, OR=1.40, P=0.279) histology. CONCLUSIONS: We found that HABP2 G534E is a low-to-moderate frequency variant in the British Isles and failed to detect an association with NMTC risk, independent of histological type. Hence, our study does not implicate HABP2 G534E or a correlated polymorphism in familial NMTC and additional data are required before using this variant in NMTC risk assessment.

Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, Castro-Giner F, Weischenfeldt J et al. 2015. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun, 6 pp. 8940. | Show Abstract | Read more

Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data from a replication set of 92 tumours. We identify 14 genes as the main drivers, of which some were formerly unknown in the context of osteosarcoma. None of the drivers is clearly responsible for the majority of tumours and even TP53 mutations are frequently mapped into subclones. However, >80% of osteosarcomas exhibit a specific combination of single-base substitutions, LOH, or large-scale genome instability signatures characteristic of BRCA1/2-deficient tumours. Our findings imply that multiple oncogenic pathways drive chromosomal instability during osteosarcoma evolution and result in the acquisition of BRCA-like traits, which could be therapeutically exploited.

Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, Largiadèr CR, Jennings BA et al. 2015. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol, 16 (16), pp. 1639-1650. | Show Abstract | Read more

BACKGROUND: The best-known cause of intolerance to fluoropyrimidines is dihydropyrimidine dehydrogenase (DPD) deficiency, which can result from deleterious polymorphisms in the gene encoding DPD (DPYD), including DPYD*2A and c.2846A>T. Three other variants-DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A-have been associated with DPD deficiency, but no definitive evidence for the clinical validity of these variants is available. The primary objective of this systematic review and meta-analysis was to assess the clinical validity of c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity. METHODS: We did a systematic review of the literature published before Dec 17, 2014, to identify cohort studies investigating associations between DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A and severe (grade ≥3) fluoropyrimidine-associated toxicity in patients treated with fluoropyrimidines (fluorouracil, capecitabine, or tegafur-uracil as single agents, in combination with other anticancer drugs, or with radiotherapy). Individual patient data were retrieved and analysed in a multivariable analysis to obtain an adjusted relative risk (RR). Effect estimates were pooled by use of a random-effects meta-analysis. The threshold for significance was set at a p value of less than 0·0167 (Bonferroni correction). FINDINGS: 7365 patients from eight studies were included in the meta-analysis. DPYD c.1679T>G was significantly associated with fluoropyrimidine-associated toxicity (adjusted RR 4·40, 95% CI 2·08-9·30, p<0·0001), as was c.1236G>A/HapB3 (1·59, 1·29-1·97, p<0·0001). The association between c.1601G>A and fluoropyrimidine-associated toxicity was not significant (adjusted RR 1·52, 95% CI 0·86-2·70, p=0·15). Analysis of individual types of toxicity showed consistent associations of c.1679T>G and c.1236G>A/HapB3 with gastrointestinal toxicity (adjusted RR 5·72, 95% CI 1·40-23·33, p=0·015; and 2·04, 1·49-2·78, p<0·0001, respectively) and haematological toxicity (adjusted RR 9·76, 95% CI 3·03-31·48, p=0·00014; and 2·07, 1·17-3·68, p=0·013, respectively), but not with hand-foot syndrome. DPYD*2A and c.2846A>T were also significantly associated with severe fluoropyrimidine-associated toxicity (adjusted RR 2·85, 95% CI 1·75-4·62, p<0·0001; and 3·02, 2·22-4·10, p<0·0001, respectively). INTERPRETATION: DPYD variants c.1679T>G and c.1236G>A/HapB3 are clinically relevant predictors of fluoropyrimidine-associated toxicity. Upfront screening for these variants, in addition to the established variants DPYD*2A and c.2846A>T, is recommended to improve the safety of patients with cancer treated with fluoropyrimidines. FUNDING: None.

Cheng TH, Thompson D, Painter J, O'Mara T, Gorman M, Martin L, Palles C, Jones A et al. 2015. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Sci Rep, 5 pp. 17369. | Show Abstract | Read more

High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.

Lei J, Rudolph A, Moysich KB, Behrens S, Goode EL, Bolla MK, Dennis J, Dunning AM et al. 2016. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium. Hum Genet, 135 (1), pp. 137-154. | Show Abstract | Read more

Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.

Frampton MJ, Law P, Litchfield K, Morris EJ, Kerr D, Turnbull C, Tomlinson IP, Houlston RS. 2016. Implications of polygenic risk for personalised colorectal cancer screening. Ann Oncol, 27 (3), pp. 429-434. | Show Abstract | Read more

BACKGROUND: We modelled the utility of applying a personalised screening approach for colorectal cancer (CRC) when compared with standard age-based screening. In this personalised screening approach, eligibility is determined by absolute risk which is calculated from age and polygenic risk score (PRS), where the PRS is relative risk attributable to common genetic variation. In contrast, eligibility in age-based screening is determined only by age. DESIGN: We calculated absolute risks of CRC from UK population age structure, incidence and mortality rate data, and a PRS distribution which we derived for the 37 known CRC susceptibility variants. We compared the number of CRC cases potentially detectable by personalised and age-based screening. Using Genome-Wide Complex Trait Analysis to calculate the heritability attributable to common variation, we repeated the analysis assuming all common CRC risk variants were known. RESULTS: Based on the known CRC variants, individuals with a PRS in the top 1% have a 2.9-fold increased CRC risk over the population median. Compared with age-based screening (aged 60: 10-year absolute risk 1.96% in men, 1.19% in women, as per the UK NHS National Bowel Screening Programme), personalised screening of individuals aged 55-69 at the same risk would lead to 16% fewer men and 17% fewer women being eligible for screening with 10% and 8%, respectively, fewer screen-detected cases. If all susceptibility variants were known, individuals with a PRS in the top 1% would have an estimated 7.7-fold increased risk. Personalised screening would then result in 26% fewer men and women being eligible for screening with 7% and 5% fewer screen-detected cases. CONCLUSION: Personalised screening using PRS has the potential to optimise population screening for CRC and to define those likely to maximally benefit from chemoprevention. There are however significant technical and operational details to be addressed before any such programme is introduced.

Timofeeva MN, Kinnersley B, Farrington SM, Whiffin N, Palles C, Svinti V, Lloyd A, Gorman M et al. 2015. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer. Sci Rep, 5 pp. 16286. | Show Abstract | Read more

Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10(-7)), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10(-7)); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10(-7) and OR = 1.09, P = 7.4 × 10(-8)); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10(-9)), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10(-6)). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10(-4)) and DNA mismatch repair genes (P = 6.1 × 10(-4)) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC.

Zhang B, Shu X-O, Delahanty RJ, Zeng C, Michailidou K, Bolla MK, Wang Q, Dennis J et al. 2015. Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 107 (11), pp. djv219-djv219. | Show Abstract | Read more

© The Author 2015. Published by Oxford University Press. All rights reserved.Background: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. Methods: We performed a meta-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5 216 302 women, including 113 178 events. In a consortium with individual-level data from 46 325 case patients and 42 482 control subjects, we conducted a Mendelian randomization analysis using a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16 003 case patients and 41 335 control subjects. Results: The pooled relative risk of breast cancer was 1.17 (95% confidence interval [CI] = 1.15 to 1.19) per 10 cm increase in height in the meta-analysis of prospective studies. In Mendelian randomization analysis, the odds ratio of breast cancer per 10 cm increase in genetically predicted height was 1.22 (95% CI = 1.13 to 1.32) in the first consortium and 1.21 (95% CI = 1.05 to 1.39) in the second consortium. The association was found in both premenopausal and postmenopausal women but restricted to hormone receptor-positive breast cancer. Analyses of height-associated variants identified eight new loci associated with breast cancer risk after adjusting for multiple comparisons, including three loci at 1q21.2, DNAJC27, and CCDC91 at genome-wide significance level P < 5 × 10-8. Conclusions: Our study provides strong evidence that adult height is a risk factor for breast cancer in women and certain genetic factors and biological pathways affecting adult height have an important role in the etiology of breast cancer.

Montazeri Z, Theodoratou E, Nyiraneza C, Timofeeva M, Chen W, Svinti V, Sivakumaran S, Gresham G et al. 2016. Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. Int J Epidemiol, 45 (1), pp. 186-205. | Show Abstract | Read more

BACKGROUND: Low penetrance genetic variants, primarily single nucleotide polymorphisms, have substantial influence on colorectal cancer (CRC) susceptibility. Most CRCs develop from colorectal adenomas (CRA). Here we report the first comprehensive field synopsis that catalogues all genetic association studies on CRA, with a parallel online database [http://www.chs.med.ed.ac.uk/CRAgene/]. METHODS: We performed a systematic review, reviewing 9750 titles, and then extracted data from 130 publications reporting on 181 polymorphisms in 74 genes. We conducted meta-analyses to derive summary effect estimates for 37 polymorphisms in 26 genes. We applied the Venice criteria and Bayesian False Discovery Probability (BFDP) to assess the levels of the credibility of associations. RESULTS: We considered the association with the rs6983267 variant at 8q24 as 'highly credible', reaching genome-wide statistical significance in at least one meta-analysis model. We identified 'less credible' associations (higher heterogeneity, lower statistical power, BFDP > 0.02) with a further four variants of four independent genes: MTHFR c.677C>T p.A222V (rs1801133), TP53 c.215C>G p.R72P (rs1042522), NQO1 c.559C>T p.P187S (rs1800566), and NAT1 alleles imputed as fast acetylator genotypes. For the remaining 32 variants of 22 genes for which positive associations with CRA risk have been previously reported, the meta-analyses revealed no credible evidence to support these as true associations. CONCLUSIONS: The limited number of credible associations between low penetrance genetic variants and CRA reflects the lower volume of evidence and associated lack of statistical power to detect associations of the magnitude typically observed for genetic variants and chronic diseases. The CRA gene database provides context for CRA genetic association data and will help inform future research directions.

Findlay JM, Middleton MR, Tomlinson I. 2016. Genetic Biomarkers of Barrett's Esophagus Susceptibility and Progression to Dysplasia and Cancer: A Systematic Review and Meta-Analysis. Dig Dis Sci, 61 (1), pp. 25-38. | Show Abstract | Read more

Barrett's esophagus (BE) is a common and important precursor lesion of esophageal adenocarcinoma (EAC). A third of patients with BE are asymptomatic, and our ability to predict the risk of progression of metaplasia to dysplasia and EAC (and therefore guide management) is limited. There is an urgent need for clinically useful biomarkers of susceptibility to both BE and risk of subsequent progression. This study aims to systematically identify, review, and meta-analyze genetic biomarkers reported to predict both. A systematic review of the PubMed and EMBASE databases was performed in May 2014. Study and evidence quality were appraised using the revised American Society of Clinical Oncology guidelines, and modified Recommendations for Tumor Marker Scores. Meta-analysis was performed for all markers assessed by more than one study. A total of 251 full-text articles were reviewed; 52 were included. A total of 33 germline markers of susceptibility were identified (level of evidence II-III); 17 were included. Five somatic markers of progression were identified; meta-analysis demonstrated significant associations for chromosomal instability (level of evidence II). One somatic marker of progression/relapse following photodynamic therapy was identified. However, a number of failings of methodology and reporting were identified. This is the first systematic review and meta-analysis to evaluate genetic biomarkers of BE susceptibility and risk of progression. While a number of limitations of study quality temper the utility of those markers identified, some-in particular, those identified by genome-wide association studies, and chromosomal instability for progression-appear plausible, although robust validation is required.

Sahasrabudhe R, Estrada A, Lott P, Martin L, Polanco Echeverry G, Velez A, Neta G, Takahasi M et al. 2015. The 8q24 rs6983267G variant is associated with increased thyroid cancer risk. Endocr Relat Cancer, 22 (5), pp. 841-849. | Show Abstract | Read more

The G allele of the rs6983267 single-nucleotide polymorphism, located on chromosome 8q24, has been associated with increased risk of several cancer types. The association between rs6983267G and thyroid cancer (TC) has been tested in different populations, mostly of European ancestry, and has led to inconclusive results. While significant associations have been reported in the British and Polish populations, no association has been detected in populations from Spain, Italy and the USA. To further investigate the role of rs6983267G in TC susceptibility, we evaluated rs6983267 genotypes in three populations of different continental ancestry (British Isles, Colombia and Japan), providing a total of 3067 cases and 8575 controls. We detected significant associations between rs6983267G and TC in the British Isles (odds ratio (OR)=1.19, 95% CI: 1.11-1.27, P=4.03×10(-7)), Japan (OR=1.20, 95% CI: 1.03-1.41, P=0.022) and a borderline significant association of similar effect direction and size in Colombia (OR=1.19, 95% CI: 0.99-1.44, P=0.069). A meta-analysis of our multi-ethnic study and previously published non-overlapping datasets, which included a total of 5484 cases and 12 594 controls, confirmed the association between rs6983267G and TC (P=1.23×10(-7), OR=1.13, 95% CI: 1.08-1.18). Our results therefore support the notion that rs6983267G is a bona fide TC risk variant that increases the risk of disease by ∼13%.

Day FR, Ruth KS, Thompson DJ, Lunetta KL, Pervjakova N, Chasman DI, Stolk L, Finucane HK et al. 2015. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet, 47 (11), pp. 1294-1303. | Show Abstract | Read more

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

Pinheiro M, Pinto C, Peixoto A, Veiga I, Lopes P, Henrique R, Baldaia H, Carneiro F et al. 2015. Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation. Br J Cancer, 113 (4), pp. 686-692. | Show Abstract | Read more

BACKGROUND: We previously reported that the target genes in sporadic mismatch repair (MMR)-deficient colorectal carcinomas (CRCs) in the distal colon differ from those occurring elsewhere in the colon. This study aimed to compare the target gene mutational pattern in microsatellite instability (MSI) CRC from Lynch syndrome patients stratified by tumour location and germline mutation, as well as with that of sporadic disease. METHODS: A series of CRC from Lynch syndrome patients was analysed for MSI in genes predicted to be selective MSI targets and known to be involved in several pathways of colorectal carcinogenesis. RESULTS: The most frequently mutated genes belong to the TGF-β superfamily pathway, namely ACVR2A and TGFBR2. A significantly higher frequency of target gene mutations was observed in CRC from patients with germline mutations in MLH1 or MSH2 when compared with MSH6. Mutations in microsatellite sequences (A)7 of BMPR2 and (A)8 of MSH3 were significantly more frequent in the distal CRC. Additionally, we observed differences in MSH3 and TGFBR2 mutational frequency between Lynch syndrome and sporadic MSI CRC regarding tumour location. CONCLUSIONS: Our results indicate that the pattern of genetic changes differs in CRC depending on tumour location and between Lynch syndrome and sporadic MSI CRC, suggesting that carcinogenesis can occur by different pathways even if driven by generalised MSI.

Aoude LG, Heitzer E, Johansson P, Gartside M, Wadt K, Pritchard AL, Palmer JM, Symmons J et al. 2015. POLE mutations in families predisposed to cutaneous melanoma Familial Cancer, 14 (4), pp. 621-628. | Show Abstract | Read more

© 2015, Springer Science+Business Media Dordrecht.Germline mutations in the exonuclease domain of POLE have been shown to predispose to colorectal cancers and adenomas. POLE is an enzyme involved in DNA repair and chromosomal DNA replication. In order to assess whether such mutations might also predispose to cutaneous melanoma, we interrogated whole-genome and exome data from probands of 34 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, BAP1, TERT, POT1, ACD and TERF2IP. We found a novel germline mutation, POLE p.(Trp347Cys), in a 7-case cutaneous melanoma family. Functional assays in S. pombe showed that this mutation led to an increased DNA mutation rate comparable to that seen with a Pol ε mutant with no exonuclease activity. We then performed targeted sequencing of POLE in 1243 cutaneous melanoma cases and found that a further ten probands had novel or rare variants in the exonuclease domain of POLE. Although this frequency is not significantly higher than that in unselected Caucasian controls, we observed multiple cancer types in the melanoma families, suggesting that some germline POLE mutations may predispose to a broad spectrum of cancers, including melanoma. In addition, we found the first mutation outside the exonuclease domain, p.(Gln520Arg), in a family with an extensive history of colorectal cancer.

Aoude LG, Heitzer E, Johansson P, Gartside M, Wadt K, Pritchard AL, Palmer JM, Symmons J et al. 2015. POLE mutations in families predisposed to cutaneous melanoma. Fam Cancer, 14 (4), pp. 621-628. | Show Abstract | Read more

Germline mutations in the exonuclease domain of POLE have been shown to predispose to colorectal cancers and adenomas. POLE is an enzyme involved in DNA repair and chromosomal DNA replication. In order to assess whether such mutations might also predispose to cutaneous melanoma, we interrogated whole-genome and exome data from probands of 34 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, BAP1, TERT, POT1, ACD and TERF2IP. We found a novel germline mutation, POLE p.(Trp347Cys), in a 7-case cutaneous melanoma family. Functional assays in S. pombe showed that this mutation led to an increased DNA mutation rate comparable to that seen with a Pol ε mutant with no exonuclease activity. We then performed targeted sequencing of POLE in 1243 cutaneous melanoma cases and found that a further ten probands had novel or rare variants in the exonuclease domain of POLE. Although this frequency is not significantly higher than that in unselected Caucasian controls, we observed multiple cancer types in the melanoma families, suggesting that some germline POLE mutations may predispose to a broad spectrum of cancers, including melanoma. In addition, we found the first mutation outside the exonuclease domain, p.(Gln520Arg), in a family with an extensive history of colorectal cancer.

Tomlinson I. 2015. The Mendelian colorectal cancer syndromes. Ann Clin Biochem, 52 (Pt 6), pp. 690-692. | Show Abstract | Read more

A small minority of colorectal cancers (CRCs) (≤5%) are caused by a single, inherited faulty gene. These diseases, the Mendelian colorectal cancer (CRC) syndromes, have been central to our understanding of colorectal carcinogenesis in general. Most of the approximately 13 high-penetrance genes that predispose to CRC primarily predispose to colorectal polyps, and each gene is associated with a specific type of polyp, whether conventional adenomas (APC, MUTYH, POLE, POLD1, NTHL1), juvenile polyps (SMAD4, BMPR1A), Peutz-Jeghers hamartomas (LKB1/STK11) and mixed polyps of serrated and juvenile types (GREM1). Lynch syndrome (MSH2, MLH1, MSH6, PMS2), by contrast, is associated primarily with cancer risk. Major functional pathways are consistently inactivated in the Mendelian CRC syndromes: certain types of DNA repair (proofreading of DNA replication errors, mismatch repair and base excision repair) and signalling (bone morphogenetic protein (BMP), Wnt signalling and mTOR). The inheritance of the CRC syndromes also varies: most are dominant but some of the DNA repair deficiencies are recessive. Some of the Mendelian CRC genes are especially important because they play a role through somatic inactivation in sporadic CRC (APC, MLH1, SMAD4, POLE). Additional Mendelian CRC genes may remain to be discovered and searches for these genes are ongoing, especially in patients with multiple adenomas and hyperplastic polyps.

van Gool IC, Eggink FA, Freeman-Mills L, Stelloo E, Marchi E, de Bruyn M, Palles C, Nout RA et al. 2015. POLE Proofreading Mutations Elicit an Antitumor Immune Response in Endometrial Cancer. Clin Cancer Res, 21 (14), pp. 3347-3355. | Show Abstract | Read more

PURPOSE: Recent studies have shown that 7% to 12% of endometrial cancers are ultramutated due to somatic mutation in the proofreading exonuclease domain of the DNA replicase POLE. Interestingly, these tumors have an excellent prognosis. In view of the emerging data linking mutation burden, immune response, and clinical outcome in cancer, we investigated whether POLE-mutant endometrial cancers showed evidence of increased immunogenicity. EXPERIMENTAL DESIGN: We examined immune infiltration and activation according to tumor POLE proofreading mutation in a molecularly defined endometrial cancer cohort including 47 POLE-mutant tumors. We sought to confirm our results by analysis of RNAseq data from the TCGA endometrial cancer series and used the same series to examine whether differences in immune infiltration could be explained by an enrichment of immunogenic neoepitopes in POLE-mutant endometrial cancers. RESULTS: Compared with other endometrial cancers, POLE mutants displayed an enhanced cytotoxic T-cell response, evidenced by increased numbers of CD8(+) tumor-infiltrating lymphocytes and CD8A expression, enrichment for a tumor-infiltrating T-cell gene signature, and strong upregulation of the T-cell cytotoxic differentiation and effector markers T-bet, Eomes, IFNG, PRF, and granzyme B. This was accompanied by upregulation of T-cell exhaustion markers, consistent with chronic antigen exposure. In silico analysis confirmed that POLE-mutant cancers are predicted to display more antigenic neoepitopes than other endometrial cancers, providing a potential explanation for our findings. CONCLUSIONS: Ultramutated POLE proofreading-mutant endometrial cancers are characterized by a robust intratumoral T-cell response, which correlates with, and may be caused by an enrichment of antigenic neopeptides. Our study provides a plausible mechanism for the excellent prognosis of these cancers.

Darabi H, McCue K, Beesley J, Michailidou K, Nord S, Kar S, Humphreys K, Thompson D et al. 2015. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. Am J Hum Genet, 97 (1), pp. 22-34. | Show Abstract | Read more

Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.

Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, Kanapin A, Lunter G et al. 2015. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet, 47 (7), pp. 717-726. | Show Abstract | Read more

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.

Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, Wang Q, Dennis J et al. 2015. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst, 107 (5), pp. djv036-djv036. | Show Abstract | Read more

BACKGROUND: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. METHODS: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. RESULTS: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. CONCLUSIONS: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.

Pirie A, Guo Q, Kraft P, Canisius S, Eccles DM, Rahman N, Nevanlinna H, Chen C et al. 2015. Common germline polymorphisms associated with breast cancer-specific survival Breast Cancer Research, | Show Abstract | Read more

© 2015 Pirie et al. Introduction: Previous studies have identified common germline variants nominally associated with breast cancer survival. These associations have not been widely replicated in further studies. The purpose of this study was to evaluate the association of previously reported SNPs with breast cancer-specific survival using data from a pooled analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association Consortium. Methods: A literature review was conducted of all previously published associations between common germline variants and three survival outcomes: breast cancer-specific survival, overall survival and disease-free survival. All associations that reached the nominal significance level of P value <0.05 were included. Single nucleotide polymorphisms that had been previously reported as nominally associated with at least one survival outcome were evaluated in the pooled analysis of over 37,000 breast cancer cases for association with breast cancer-specific survival. Previous associations were evaluated using a one-sided test based on the reported direction of effect. Results: Fifty-six variants from 45 previous publications were evaluated in the meta-analysis. Fifty-four of these were evaluated in the full set of 37,954 breast cancer cases with 2,900 events and the two additional variants were evaluated in a reduced sample size of 30,000 samples in order to ensure independence from the previously published studies. Five variants reached nominal significance (P <0.05) in the pooled GWAS data compared to 2.8 expected under the null hypothesis. Seven additional variants were associated (P <0.05) with ER-positive disease. Conclusions: Although no variants reached genome-wide significance (P <5 x 10<sup>-8</sup>), these results suggest that there is some evidence of association between candidate common germline variants and breast cancer prognosis. Larger studies from multinational collaborations are necessary to increase the power to detect associations, between common variants and prognosis, at more stringent significance levels.

Pirie A, Guo Q, Kraft P, Canisius S, Eccles DM, Rahman N, Nevanlinna H, Chen C et al. 2015. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res, 17 (1), pp. 58. | Show Abstract | Read more

INTRODUCTION: Previous studies have identified common germline variants nominally associated with breast cancer survival. These associations have not been widely replicated in further studies. The purpose of this study was to evaluate the association of previously reported SNPs with breast cancer-specific survival using data from a pooled analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association Consortium. METHODS: A literature review was conducted of all previously published associations between common germline variants and three survival outcomes: breast cancer-specific survival, overall survival and disease-free survival. All associations that reached the nominal significance level of P value <0.05 were included. Single nucleotide polymorphisms that had been previously reported as nominally associated with at least one survival outcome were evaluated in the pooled analysis of over 37,000 breast cancer cases for association with breast cancer-specific survival. Previous associations were evaluated using a one-sided test based on the reported direction of effect. RESULTS: Fifty-six variants from 45 previous publications were evaluated in the meta-analysis. Fifty-four of these were evaluated in the full set of 37,954 breast cancer cases with 2,900 events and the two additional variants were evaluated in a reduced sample size of 30,000 samples in order to ensure independence from the previously published studies. Five variants reached nominal significance (P <0.05) in the pooled GWAS data compared to 2.8 expected under the null hypothesis. Seven additional variants were associated (P <0.05) with ER-positive disease. CONCLUSIONS: Although no variants reached genome-wide significance (P <5 x 10(-8)), these results suggest that there is some evidence of association between candidate common germline variants and breast cancer prognosis. Larger studies from multinational collaborations are necessary to increase the power to detect associations, between common variants and prognosis, at more stringent significance levels.

Smith CG, Fisher D, Harris R, Maughan TS, Phipps AI, Richman S, Seymour M, Tomlinson I et al. 2015. Analyses of 7,635 Patients with Colorectal Cancer Using Independent Training and Validation Cohorts Show That rs9929218 in CDH1 Is a Prognostic Marker of Survival. Clin Cancer Res, 21 (15), pp. 3453-3461. | Show Abstract | Read more

PURPOSE: Genome-wide association studies have identified numerous loci associated with colorectal cancer risk. Several of these have also been associated with patient survival, although none have been validated. Here, we used large independent training and validation cohorts to identify robust prognostic biomarkers for colorectal cancer. EXPERIMENTAL DESIGN: In our training phase, we analyzed 20 colorectal cancer-risk SNPs from 14 genome-wide associated loci, for their effects on survival in 2,083 patients with advanced colorectal cancer. A Cox survival model was used, stratified for treatment, adjusted for known prognostic factors, and corrected for multiple testing. Three SNPs were subsequently analyzed in an independent validation cohort of 5,552 colorectal cancer patients. A validated SNP was analyzed by disease stage and response to treatment. RESULTS: Three variants associated with survival in the training phase; however, only rs9929218 at 16q22 (intron 2 of CDH1, encoding E-cadherin) was significant in the validation phase. Patients homozygous for the minor allele (AA genotype) had worse survival (training phase HR, 1.43; 95% confidence intervals; CI, 1.20-1.71, P = 5.8 × 10(-5); validation phase HR, 1.18; 95% CI, 1.01-1.37, P = 3.2 × 10(-2); combined HR, 1.28; 95% CI, 1.14-1.43, P = 2.2 × 10(-5)). This effect was independent of known prognostic factors, and was significant amongst patients with stage IV disease (P = 2.7 × 10(-5)). rs9929218 was also associated with poor response to chemotherapy (P = 3.9 × 10(-4)). CONCLUSIONS: We demonstrate the potential of common inherited genetic variants to inform patient outcome and show that rs9929218 identifies approximately 8% of colorectal cancer patients with poor prognosis. rs9929218 may affect CDH1 expression and E-cadherin plays a role in epithelial-to-mesenchymal transition providing a mechanism underlying its prognostic potential. Clin Cancer Res; 21(15); 3453-61. ©2015 AACR.

Li N, Lorenzi F, Kalakouti E, Normatova M, Babaei-Jadidi R, Tomlinson I, Nateri AS. 2015. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget, 6 (11), pp. 9240-9256. | Show Abstract | Read more

FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter.

Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, Maranian MJ, Bolla MK et al. 2015. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet, 47 (4), pp. 373-380. | Show Abstract | Read more

Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

Weren RD, Venkatachalam R, Cazier JB, Farin HF, Kets CM, de Voer RM, Vreede L, Verwiel ET et al. 2015. Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development. J Pathol, 236 (2), pp. 155-164. | Show Abstract | Read more

Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC.

Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, Johnson N, Ghoussaini M et al. 2015. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Hum Mol Genet, 24 (10), pp. 2966-2984. | Show Abstract | Read more

We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

Vasen HF, Tomlinson I, Castells A. 2015. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol, 12 (2), pp. 88-97. | Show Abstract | Read more

Hereditary factors are involved in the development of a substantial proportion of all cases of colorectal cancer. Inherited forms of colorectal cancer are usually subdivided into polyposis syndromes characterized by the development of multiple colorectal polyps and nonpolyposis syndromes characterized by the development of few or no polyps. Timely identification of hereditary colorectal cancer syndromes is vital because patient participation in early detection programmes prevents premature death due to cancer. Polyposis syndromes are fairly easy to recognize, but some patients might have characteristics that overlap with other clinically defined syndromes. Comprehensive analysis of the genes known to be associated with polyposis syndromes helps to establish the final diagnosis in these patients. Recognizing Lynch syndrome is more difficult than other polyposis syndromes owing to the absence of pathognomonic features. Most investigators therefore recommend performing systematic molecular analysis of all newly diagnosed colorectal cancer using immunohistochemical methods. The implementation in clinical practice of new high-throughput methods for molecular analysis might further increase the identification of individuals at risk of hereditary colorectal cancer. This Review describes the clinical management of the various hereditary colorectal cancer syndromes and demonstrates the advantage of using a classification based on the underlying gene defects.

Kabisch M, Lorenzo Bermejo J, Dünnebier T, Ying S, Michailidou K, Bolla MK, Wang Q, Dennis J et al. 2015. Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 36 (2), pp. 256-271. | Show Abstract | Read more

The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated.

Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O'Reilly M et al. 2015. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1 American Journal of Human Genetics, 96 (1), pp. 5-20. | Show Abstract | Read more

© 2015 The American Society of Human Genetics.Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER+: odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10-44) and estrogen-receptor-negative (ER-: OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10-4) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10-5]) and five variants composing iCHAV3 (lead rs11949391; ER+: OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10-4). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.

Guo X, Long J, Zeng C, Michailidou K, Ghoussaini M, Bolla MK, Wang Q, Milne RL et al. 2015. Fine-scale mapping of the 4q24 locus identifies two independent loci associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev, 24 (11), pp. 1680-1691. | Show Abstract | Read more

BACKGROUND: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. METHODS: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. RESULTS: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10(-4); OR, 1.04; 95% confidence interval (CI), 1.02-1.07] and rs77928427 (P = 1.86 × 10(-4); OR, 1.04; 95% CI, 1.02-1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r(2) ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor-binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. CONCLUSION: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. IMPACT: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk.

Castro-Giner F, Ratcliffe P, Tomlinson I. 2015. The mini-driver model of polygenic cancer evolution. Nat Rev Cancer, 15 (11), pp. 680-685. | Show Abstract | Read more

Much of cancer genetics research has focused on the identification of the most-important somatic mutations ('major drivers') that cause tumour growth. However, many mutations found in cancer might not be major drivers or 'passenger' mutations, but instead might have relatively weak tumour-promoting effects. Our aim is to highlight the existence of these mutations (termed 'mini drivers' herein), as multiple mini-driver mutations might substitute for a major-driver change, especially in the presence of genomic instability or high mutagen exposure. The mini-driver model has clinical implications: for example, the effects of therapeutically targeting such genes may be limited. However, the main importance of the model lies in helping to provide a complete understanding of tumorigenesis, especially as we anticipate that an increasing number of mini-driver mutations will be found by cancer genome sequencing.

O'Mara TA, Glubb DM, Painter JN, Cheng T, Dennis J, Australian National Endometrial Cancer Study Group (ANECS), Attia J, Holliday EG et al. 2015. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer. Endocr Relat Cancer, 22 (5), pp. 851-861. | Show Abstract | Read more

Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types.

Cited:

27

Scopus

Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, Jaeger E, Lewis A et al. 2015. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche Nature Medicine, 21 (1), pp. 62-70. | Show Abstract | Read more

© 2014 Nature America, Inc. All rights reserved.Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

Darabi H, McCue K, Beesley J, Michailidou K, Nord S, Kar S, Humphreys K, Thompson D et al. 2015. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression American Journal of Human Genetics, 97 (1), pp. 22-34. | Show Abstract | Read more

© 2015 The American Society of Human Genetics.Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5′ of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.

Beggs AD, Dilworth MP, Domingo E, Midgley R, Kerr D, Tomlinson IP, Middleton GW. 2015. Methylation changes in the TFAP2E promoter region are associated with BRAF mutation and poorer overall & disease free survival in colorectal cancer. Oncoscience, 2 (5), pp. 508-516. | Show Abstract | Read more

INTRODUCTION: BRAF mutant colorectal cancer carries a poor prognosis which is thought to be related to poor response to conventional chemotherapy. BRAF mutation is associated with the serrated tumour phenotype. We hypothesised that one of the mechanisms by which BRAF mutant colorectal cancer demonstrate poor outcomes with chemotherapy is abnormal gene methylation. METHODS: The Cancer Genome Atlas (TCGA) methylation data was analysed using a linear regression model with BRAF mutation as an independent variable. Expression datasets were also obtained to correlate functional changes. Top differentially methylated probes were taken forward for validation by methylation pyrosequencing. These probes were analysed on a cohort of patients enriched for BRAF mutations taken from the VICTOR and QUASAR2 studies. RESULTS: In an analysis of 91 tumours (9 BRAF mutant, 82 wild type), the Illumina probe cg11835197 was the probe identified as top differentially methylated (p = 2.56×10-7, Bayes Factor (BF) =6.54). This probe covered a region -413bp from the promoter region of TFAP2E. We found a complex pattern of CpG specific methylation of this region which was associated with both overall (p=0.044) and disease free (p=0.046) survival. DISCUSSION: BRAF mutant tumours may attain part of their chemoresistance from abnormal TFAP2E methylation, which has not previously been described.

Tomlinson I. 2015. An update on the molecular pathology of the intestinal polyposis syndromes Diagnostic Histopathology, 21 (4), pp. 147-151. | Show Abstract | Read more

© 2015 The Author.The intestinal polyposis syndromes are characterised by multiple polyps of the large bowel, increased risk of colorectal cancer and a variety of extra-colonic manifestations. Most are caused by high-penetrance germline mutations in genes that affect signalling pathways (Wnt, BMP or mTOR) or the repair of base substitution mutations. However, there are exceptions to these rules: Lynch syndrome usually presents with few polyps; and hyperplastic (serrated) polyposis currently has no known genetic cause. Polyp morphology also varies considerably between, and sometimes within, syndromes. Patients with the same germline mutations can have very different disease severities and features, perhaps as a result of modifying genes or simply chance. Although clinical features and histopathology will continue to have an important role, molecular testing is best placed to classify these diseases and hence inform patient management. As more genes are identified, this classification is likely to improve and enable better individual cancer prevention based on the mutated gene, the specific germline mutation, modifier genes and non-genetic factors.

Tomlinson I. 2015. An update on the molecular pathology of the intestinal polyposis syndromes Diagnostic Histopathology, | Show Abstract | Read more

© 2015 The Author. The intestinal polyposis syndromes are characterised by multiple polyps of the large bowel, increased risk of colorectal cancer and a variety of extra-colonic manifestations. Most are caused by high-penetrance germline mutations in genes that affect signalling pathways (Wnt, BMP or mTOR) or the repair of base substitution mutations. However, there are exceptions to these rules: Lynch syndrome usually presents with few polyps; and hyperplastic (serrated) polyposis currently has no known genetic cause. Polyp morphology also varies considerably between, and sometimes within, syndromes. Patients with the same germline mutations can have very different disease severities and features, perhaps as a result of modifying genes or simply chance. Although clinical features and histopathology will continue to have an important role, molecular testing is best placed to classify these diseases and hence inform patient management. As more genes are identified, this classification is likely to improve and enable better individual cancer prevention based on the mutated gene, the specific germline mutation, modifier genes and non-genetic factors.

Guo Q, Schmidt MK, Kraft P, Canisius S, Chen C, Khan S, Tyrer J, Bolla MK et al. 2015. Identification of novel genetic markers of breast cancer survival. J Natl Cancer Inst, 107 (5), pp. djv081-djv081. | Show Abstract | Read more

BACKGROUND: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. METHODS: We conducted a large meta-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)-negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. RESULTS: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases (hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10(-8)). Genotyping a subset of 2113 case patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus (rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less robust. CONCLUSIONS: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in addition to standard tumor prognostic factors.

Al-Tassan NA, Whiffin N, Hosking FJ, Palles C, Farrington SM, Dobbins SE, Harris R, Gorman M et al. 2015. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep, 5 pp. 10442. | Show Abstract | Read more

Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10(-8), odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10(-8); OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10(-8); OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants.

Laitman Y, Jaeger E, Katz L, Tomlinson I, Friedman E. 2015. GREM1 germline mutation screening in Ashkenazi Jewish patients with familial colorectal cancer. Genet Res (Camb), 97 pp. e11. | Show Abstract | Read more

BACKGROUND: A 40 kb ancestral germline duplication upstream of the GREM1 gene was reported in Ashkenazi families with hereditary mixed polyposis syndrome (HMPS). OBJECTIVE: Assess the contribution of the GREM1 mutation to familial colorectal cancer (CRC) in Ashkenazim. METHODS: Jewish Ashkenazi individuals (n = 472 155 males, 317 females) were genotyped for the GREM1 duplication, 194 with CRC, 131 had other cancer types (endometrial, pancreatic and ovarian) that show a syndromic association with CRC, and 147 were cancer-free with a suggestive family history of CRC. RESULTS: One mutation carrier was found who fulfills the Amsterdam criteria for Lynch Syndrome (LS). The prevalence of this mutation amongst LS Ashkenazim is 0·7%. CONCLUSION: If validated in additional studies it seems rational to recommend to look for the GREM1 founder mutation in Ashkenazi individuals with multiple colorectal polyps and/or fulfill the criteria for LS.

Weren RDA, Venkatachalam R, Cazier JB, Farin HF, Kets CM, De Voer RM, Vreede L, Verwiel ETP et al. 2015. Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development Journal of Pathology, 236 (2), pp. 155-164. | Show Abstract | Read more

© 2015 Authors. Journal of Pathology published by John Wiley & Sons Ltd.Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC.

Li W, Dobbins S, Tomlinson I, Houlston R, Pal DK, Strug LJ. 2015. Prioritizing rare variants with conditional likelihood ratios. Hum Hered, 79 (1), pp. 5-13. | Show Abstract | Read more

BACKGROUND: Prioritizing individual rare variants within associated genes or regions often consists of an ad hoc combination of statistical and biological considerations. From the statistical perspective, rare variants are often ranked using Fisher's exact p values, which can lead to different rankings of the same set of variants depending on whether 1- or 2-sided p values are used. RESULTS: We propose a likelihood ratio-based measure, maxLRc, for the statistical component of ranking rare variants under a case-control study design that avoids the hypothesis-testing paradigm. We prove analytically that the maxLRc is always well-defined, even when the data has zero cell counts in the 2×2 disease-variant table. Via simulation, we show that the maxLRc outperforms Fisher's exact p values in most practical scenarios considered. Using next-generation sequence data from 27 rolandic epilepsy cases and 200 controls in a region previously shown to be linked to and associated with rolandic epilepsy, we demonstrate that rankings assigned by the maxLRc and exact p values can differ substantially. CONCLUSION: The maxLRc provides reliable statistical prioritization of rare variants using only the observed data, avoiding the need to specify parameters associated with hypothesis testing that can result in ranking discrepancies across p value procedures; and it is applicable to common variant prioritization.

Freitag DF, Butterworth AS, Willeit P, Howson JMM, Burgess S, Kaptoge S, Young R, Ho WK et al. 2015. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis LANCET DIABETES & ENDOCRINOLOGY, 3 (4), pp. 243-253. | Show Abstract | Read more

© 2015 The Interleukin 1 Genetics Consortium.To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods: We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings: For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 0·18-0·25; 12·5%; p=9·3 × 10-33), concentrations of interleukin 6 decreased by 0·02 SD (-0·04 to -0·01; -1·7%; p=3·5 × 10-3), and concentrations of C-reactive protein decreased by 0·03 SD (-0·04 to -0·02; -3·4%; p=7·7 × 10-14). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1·15 (1·08-1·22; p=1·8 × 10-6) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1·03 (1·02-1·04; p=3·9 × 10-10). Per-allele odds ratios were 0·97 (0·95-0·99; p=9·9 × 10-4) for rheumatoid arthritis, 0·99 (0·97-1·01; p=0·47) for type 2 diabetes, 1·00 (0·98-1·02; p=0·92) for ischaemic stroke, and 1·08 (1·04-1·12; p=1·8 × 10-5) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation: Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Funding: UK Medical Research Council, British Heart Foundation, UK National Institute for Health Research, National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council, and European Commission Framework Programme 7.

Carvajal-Carmona LG, O Mara TA, Painter JN, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S et al. 2015. Candidate locus analysis of the TERT–CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk Human Genetics, 134 (2), pp. 231-245. | Show Abstract | Read more

© 2014, The Author(s).Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT–CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 × 10−6 to P = 7.7 × 10−5). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERTP = 1.5 × 10−18, CLPTM1LP = 1.5 × 10−19). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.

Church DN, Stelloo E, Nout RA, Valtcheva N, Depreeuw J, ter Haar N, Noske A, Amant F et al. 2015. Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst, 107 (1), pp. 402. | Show Abstract | Read more

BACKGROUND: Current risk stratification in endometrial cancer (EC) results in frequent over- and underuse of adjuvant therapy, and may be improved by novel biomarkers. We examined whether POLE proofreading mutations, recently reported in about 7% of ECs, predict prognosis. METHODS: We performed targeted POLE sequencing in ECs from the PORTEC-1 and -2 trials (n = 788), and analyzed clinical outcome according to POLE status. We combined these results with those from three additional series (n = 628) by meta-analysis to generate multivariable-adjusted, pooled hazard ratios (HRs) for recurrence-free survival (RFS) and cancer-specific survival (CSS) of POLE-mutant ECs. All statistical tests were two-sided. RESULTS: POLE mutations were detected in 48 of 788 (6.1%) ECs from PORTEC-1 and-2 and were associated with high tumor grade (P < .001). Women with POLE-mutant ECs had fewer recurrences (6.2% vs 14.1%) and EC deaths (2.3% vs 9.7%), though, in the total PORTEC cohort, differences in RFS and CSS were not statistically significant (multivariable-adjusted HR = 0.43, 95% CI = 0.13 to 1.37, P = .15; HR = 0.19, 95% CI = 0.03 to 1.44, P = .11 respectively). However, of 109 grade 3 tumors, 0 of 15 POLE-mutant ECs recurred, compared with 29 of 94 (30.9%) POLE wild-type cancers; reflected in statistically significantly greater RFS (multivariable-adjusted HR = 0.11, 95% CI = 0.001 to 0.84, P = .03). In the additional series, there were no EC-related events in any of 33 POLE-mutant ECs, resulting in a multivariable-adjusted, pooled HR of 0.33 for RFS (95% CI = 0.12 to 0.91, P = .03) and 0.26 for CSS (95% CI = 0.06 to 1.08, P = .06). CONCLUSION: POLE proofreading mutations predict favorable EC prognosis, independently of other clinicopathological variables, with the greatest effect seen in high-grade tumors. This novel biomarker may help to reduce overtreatment in EC.

Manchanda R, Loggenberg K, Sanderson S, Burnell M, Wardle J, Gessler S, Side L, Balogun N et al. 2015. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J Natl Cancer Inst, 107 (1), pp. 379. | Show Abstract | Read more

BACKGROUND: Technological advances raise the possibility of systematic population-based genetic testing for cancer-predisposing mutations, but it is uncertain whether benefits outweigh disadvantages. We directly compared the psychological/quality-of-life consequences of such an approach to family history (FH)-based testing. METHODS: In a randomized controlled trial of BRCA1/2 gene-mutation testing in the Ashkenazi Jewish (AJ) population, we compared testing all participants in the population screening (PS) arm with testing those fulfilling standard FH-based clinical criteria (FH arm). Following a targeted community campaign, AJ participants older than 18 years were recruited by self-referral after pretest genetic counseling. The effects of BRCA1/2 genetic testing on acceptability, psychological impact, and quality-of-life measures were assessed by random effects regression analysis. All statistical tests were two-sided. RESULTS: One thousand, one hundred sixty-eight AJ individuals were counseled, 1042 consented, 1034 were randomly assigned (691 women, 343 men), and 1017 were eligible for analysis. Mean age was 54.3 (SD = 14.66) years. Thirteen BRCA1/2 carriers were identified in the PS arm, nine in the FH arm. Five more carriers were detected among FH-negative FH-arm participants following study completion. There were no statistically significant differences between the FH and PS arms at seven days or three months on measures of anxiety, depression, health anxiety, distress, uncertainty, and quality-of-life. Contrast tests indicated that overall anxiety (P = .0001) and uncertainty (P = .005) associated with genetic testing decreased; positive experience scores increased (P = .0001); quality-of-life and health anxiety did not change with time. Overall, 56% of carriers did not fulfill clinical criteria for genetic testing, and the BRCA1/2 prevalence was 2.45%. CONCLUSION: Compared with FH-based testing, population-based genetic testing in Ashkenazi Jews doesn't adversely affect short-term psychological/quality-of-life outcomes and may detect 56% additional BRCA carriers.

Manchanda R, Legood R, Burnell M, McGuire A, Raikou M, Loggenberg K, Wardle J, Sanderson S et al. 2015. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi jewish women compared with family history-based testing. J Natl Cancer Inst, 107 (1), pp. 380. | Show Abstract | Read more

BACKGROUND: Population-based testing for BRCA1/2 mutations detects the high proportion of carriers not identified by cancer family history (FH)-based testing. We compared the cost-effectiveness of population-based BRCA testing with the standard FH-based approach in Ashkenazi Jewish (AJ) women. METHODS: A decision-analytic model was developed to compare lifetime costs and effects amongst AJ women in the UK of BRCA founder-mutation testing amongst: 1) all women in the population age 30 years or older and 2) just those with a strong FH (≥10% mutation risk). The model assumes that BRCA carriers are offered risk-reducing salpingo-oophorectomy and annual MRI/mammography screening or risk-reducing mastectomy. Model probabilities utilize the Genetic Cancer Prediction through Population Screening trial/published literature to estimate total costs, effects in terms of quality-adjusted life-years (QALYs), cancer incidence, incremental cost-effectiveness ratio (ICER), and population impact. Costs are reported at 2010 prices. Costs/outcomes were discounted at 3.5%. We used deterministic/probabilistic sensitivity analysis (PSA) to evaluate model uncertainty. RESULTS: Compared with FH-based testing, population-screening saved 0.090 more life-years and 0.101 more QALYs resulting in 33 days' gain in life expectancy. Population screening was found to be cost saving with a baseline-discounted ICER of -£2079/QALY. Population-based screening lowered ovarian and breast cancer incidence by 0.34% and 0.62%. Assuming 71% testing uptake, this leads to 276 fewer ovarian and 508 fewer breast cancer cases. Overall, reduction in treatment costs led to a discounted cost savings of £3.7 million. Deterministic sensitivity analysis and 94% of simulations on PSA (threshold £20000) indicated that population screening is cost-effective, compared with current NHS policy. CONCLUSION: Population-based screening for BRCA mutations is highly cost-effective compared with an FH-based approach in AJ women age 30 years and older.

Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O'Reilly M et al. 2015. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am J Hum Genet, 96 (1), pp. 5-20. | Show Abstract | Read more

Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.

Carvajal-Carmona LG, O'Mara TA, Painter JN, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S et al. 2015. Candidate locus analysis of the TERT-CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Hum Genet, 134 (2), pp. 231-245. | Show Abstract | Read more

Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 × 10(-6) to P = 7.7 × 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 × 10(-18), CLPTM1L P = 1.5 × 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.

Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, Jaeger E, Lewis A et al. 2015. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med, 21 (1), pp. 62-70. | Show Abstract | Read more

Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

Kovac MB, Kovacova M, Bachraty H, Bachrata K, Piscuoglio S, Hutter P, Ilencikova D, Bartosova Z, Tomlinson I, Roethlisberger B, Heinimann K. 2015. High-resolution breakpoint analysis provides evidence for the sequence-directed nature of genome rearrangements in hereditary disorders. Hum Mutat, 36 (2), pp. 250-259. | Show Abstract | Read more

Although most of the pertinent data on the sequence-directed processes leading to genome rearrangements (GRs) have come from studies on somatic tissues, little is known about GRs in the germ line of patients with hereditary disorders. This study aims at identifying DNA motifs and higher order structures of genome architecture, which can result in losses and gains of genetic material in the germ line. We first identified candidate motifs by studying 112 pathogenic germ-line GRs in hereditary colorectal cancer patients, and subsequently created an algorithm, termed recombination type ratio, which correctly predicts the propensity of rearrangements with respect to homologous versus nonhomologous recombination events.

Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. 2014. Cancer: evolution within a lifetime. Annu Rev Genet, 48 (1), pp. 215-236. | Show Abstract | Read more

Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs.

Painter JN, O'Mara TA, Batra J, Cheng T, Lose FA, Dennis J, Michailidou K, Tyrer JP et al. 2015. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet, 24 (5), pp. 1478-1492. | Show Abstract | Read more

Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.

Palles C, Chegwidden L, Li X, Findlay JM, Farnham G, Castro Giner F, Peppelenbosch MP, Kovac M et al. 2015. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus. Gastroenterology, 148 (2), pp. 367-378. | Show Abstract | Read more

BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.

Church D, Stelloo E, Nout RA, Valtcheva N, Depreeuw J, ter Haar N, Amant F, Tomlinson IPM et al. 2014. PROGNOSTIC SIGNIFICANCE OF POLE EXONUCLEASE DOMAIN MUTATION IN EARLY STAGE ENDOMETRIAL CANCER INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 24 (9), pp. 1601-1602.

Alsolami S, El-Bahrawy M, Kalloger SE, AlDaoud N, Pathak TB, Chung CT, Mulligan AM, Tomlinson IP et al. 2014. Current morphologic criteria perform poorly in identifying hereditary leiomyomatosis and renal cell carcinoma syndrome-associated uterine leiomyomas. Int J Gynecol Pathol, 33 (6), pp. 560-567. | Show Abstract | Read more

The contemporary oncologic pathology report conveys diagnostic, prognostic, predictive, and hereditary predisposition information. Each component may be premised on a morphologic feature or a biomarker. Clinical validity and reproducibility are paramount as is standardization of reporting and clinical response to ensure individualization of patient care. Regarding hereditary predisposition, morphology-based genetic referral systems in some instances have eclipsed genealogy-based systems, for example, cell type in ovarian cancer and BRCA screening. In other instances such as Lynch syndrome, morphology-based schemas supplement clinical schemas and there is an emerging standard of care for reflex biomarker testing. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome predisposes patients to uterine and cutaneous leiomyomas (LMs) and renal cell carcinomas (RCCs). Several authors have emphasized the role pathologists may play in identifying this syndrome by recognizing the morphologic characteristics of syndromic uterine LMs and RCCs. Recently immunohistochemical overexpression of S-(2-succinyl) cysteine (2SC) has been demonstrated as a robust biomarker of mutation status in tumors from HLRCC patients. In this blinded control-cohort study we demonstrate that the proposed morphologic criteria used to identify uterine LMs in HLRCC syndrome are largely irreproducible among pathologists and lack sufficient robustness to serve as a trigger to triage cases for 2SC immunohistochemistry or patients for further family/personal history inquiry. Although refinement of morphologic criteria can be considered, in view of the availability of a clinically robust biomarker, consideration should be given to reflex testing of uterine LMs with an appropriate age cut off or in the setting of a suspicious family history.

Findlay JM, Middleton MR, Tomlinson I. 2015. A systematic review and meta-analysis of somatic and germline DNA sequence biomarkers of esophageal cancer survival, therapy response and stage. Ann Oncol, 26 (4), pp. 624-644. | Show Abstract | Read more

INTRODUCTION: There is an urgent need for biomarkers to help predict prognosis and guide management of esophageal cancer. This review identifies, evaluates and meta-analyses the evidence for reported somatic and germline DNA sequence biomarkers of outcome and stage. METHODS: A systematic review was carried out of the PubMed, EMBASE and Cochrane databases (20 August 2014), in conjunction with the ASCO Level of Evidence scale for biomarker research. Meta-analyses were carried out for all reported markers associated with outcome measures by more than one study. RESULTS: Four thousand and four articles were identified, 762 retrieved and 182 studies included. There were 65 reported markers of survival or recurrence 12 (18.5%) were excluded due to multiple comparisons. Following meta-analysis, significant associations were seen for six tumor variants (mutant TP53 and PIK3CA, copy number gain of ERBB2/HER2, CCND1 and FGF3, and chromosomal instability/ploidy) and seven germline polymorphisms: ERCC1 rs3212986, ERCC2 rs1799793, TP53 rs1042522, MDM2 rs2279744, TYMS rs34743033, ABCB1 rs1045642 and MTHFR rs1801133. Twelve germline markers of treatment complications were reported; 10 were excluded. Two tumor and 15 germline markers (11 excluded) of chemo (radio)therapy response were reported. Following meta-analysis, associations were demonstrated for mutant TP53, ERCC1 rs11615 and XRCC1 rs25487. There were 41 tumor/germline reported markers of stage; 27 (65.9%) were excluded. CONCLUSIONS: Numerous DNA markers of outcome and stage have been reported, yet few are backed by high-quality evidence. Despite this, a small number of variants appear reliable. These merit evaluation in prospective trials, within the context of high-throughput sequencing and gene expression.

Whiffin N, Hosking FJ, Farrington SM, Palles C, Dobbins SE, Zgaga L, Lloyd A, Kinnersley B et al. 2014. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet, 23 (17), pp. 4729-4737. | Show Abstract | Read more

To identify common variants influencing colorectal cancer (CRC) risk, we performed a meta-analysis of five genome-wide association studies, comprising 5626 cases and 7817 controls of European descent. We conducted replication of top ranked single nucleotide polymorphisms (SNPs) in additional series totalling 14 037 cases and 15 937 controls, identifying a new CRC risk locus at 10q24.2 [rs1035209; odds ratio (OR) = 1.13, P = 4.54 × 10(-11)]. We also performed meta-analysis of our studies, with previously published data, of several recently purported CRC risk loci. We failed to find convincing evidence for a previously reported genome-wide association at rs11903757 (2q32.3). Of the three additional loci for which evidence of an association in Europeans has been previously described we failed to show an association between rs59336 (12q24.21) and CRC risk. However, for the other two SNPs, our analyses demonstrated new, formally significant associations with CRC. These are rs3217810 intronic in CCND2 (12p13.32; OR = 1.19, P = 2.16 × 10(-10)) and rs10911251 near LAMC1 (1q25.3; OR = 1.09, P = 1.75 × 10(-8)). Additionally, we found some evidence to support a relationship between, rs647161, rs2423297 and rs10774214 and CRC risk originally identified in East Asians in our European datasets. Our findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC.

Lin WY, Camp NJ, Ghoussaini M, Beesley J, Michailidou K, Hopper JL, Apicella C, Southey MC et al. 2015. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum Mol Genet, 24 (1), pp. 285-298. | Show Abstract | Read more

Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.

Lewis A, Freeman-Mills L, delaCalle-Mustienes E, Giráldez-Pérez RM, Davis H, Jaeger E, Becker M, Hubner NC et al. 2014. A polymorphic enhancer near GREM1 influences bowel cancer risk through differential CDX2 and TCF7L2 binding Cell Reports, 8 (4), pp. 983-990. | Show Abstract | Read more

A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes aMendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ~20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences inGREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in ApcMin mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors. © 2014 The Authors.

Ongen H, Andersen CL, Bramsen JB, Oster B, Rasmussen MH, Ferreira PG, Sandoval J, Vidal E et al. 2014. Putative cis-regulatory drivers in colorectal cancer. Nature, 512 (7512), pp. 87-90. | Show Abstract | Read more

The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.

Petousi N, Copley RR, Lappin TR, Haggan SE, Bento CM, Cario H, Percy MJ, WGS Consortium, Ratcliffe PJ, Robbins PA, McMullin MF. 2014. Erythrocytosis associated with a novel missense mutation in the BPGM gene. Haematologica, 99 (10), pp. e201-e204. | Read more

Menko FH, Maher ER, Schmidt LS, Middelton LA, Aittomäki K, Tomlinson I, Richard S, Linehan WM. 2014. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Fam Cancer, 13 (4), pp. 637-644. | Show Abstract | Read more

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant condition in which susceptible individuals are at risk for the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene which inactivate the enzyme and alters the function of the tricarboxylic acid (Krebs) cycle. Issues surrounding surveillance and treatment for HLRCC-associated renal cell cancer were considered as part of a recent international symposium on HLRCC. The management protocol proposed in this article is based on a literature review and a consensus meeting. The lifetime renal cancer risk for FH mutation carriers is estimated to be 15 %. In view of the potential for early onset of RCC in HLRCC, periodic renal imaging and, when available, predictive testing for a FH mutation is recommended from 8 to 10 years of age. However, the small risk of renal cell cancer in the 10-20 years age range and the potential drawbacks of screening should be carefully discussed on an individual basis. Surveillance preferably consists of annual abdominal MRI. Treatment of renal tumours should be prompt and generally consist of wide-margin surgical excision and consideration of retroperitoneal lymph node dissection. The choice for systemic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts of families.

Milne RL, Burwinkel B, Michailidou K, Arias-Perez JI, Zamora MP, Menéndez-Rodríguez P, Hardisson D, Mendiola M et al. 2014. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Hum Mol Genet, 23 (22), pp. 6096-6111. | Show Abstract | Read more

Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.

Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL et al. 2014. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet, 23 (22), pp. 6034-6046. | Show Abstract | Read more

Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.

Church D, Kerr R, Domingo E, Rosmarin D, Palles C, Maskell K, Tomlinson I, Kerr D. 2014. 'Toxgnostics': An unmet need in cancer medicine Nature Reviews Cancer, 14 (6), pp. 440-445. | Show Abstract | Read more

If we were to summarize the rationale that underpins medical oncology in a Latin aphorism, it might be 'veneno ergo sum'; that is, I poison, therefore I am. The burden of chemotherapy-associated toxicity is well recognized, but we have relatively few tools that increase the precision of anticancer drug prescribing. We propose a shift in emphasis from the focussed study of polymorphisms in drug metabolic pathways in small sets of patients to broader agnostic analyses to systematically correlate germline genetic variants with adverse events in large, well-defined cancer populations. Thus, we propose the new science of 'toxgnostics' (that is, the systematic, agnostic study of genetic predictors of toxicity from anticancer therapy). © 2014 Macmillan Publishers Limited.

Church D, Kerr R, Domingo E, Rosmarin D, Palles C, Maskell K, Tomlinson I, Kerr D. 2014. 'Toxgnostics': an unmet need in cancer medicine. Nat Rev Cancer, 14 (6), pp. 440-445. | Show Abstract | Read more

If we were to summarize the rationale that underpins medical oncology in a Latin aphorism, it might be 'veneno ergo sum'; that is, I poison, therefore I am. The burden of chemotherapy-associated toxicity is well recognized, but we have relatively few tools that increase the precision of anticancer drug prescribing. We propose a shift in emphasis from the focussed study of polymorphisms in drug metabolic pathways in small sets of patients to broader agnostic analyses to systematically correlate germline genetic variants with adverse events in large, well-defined cancer populations. Thus, we propose the new science of 'toxgnostics' (that is, the systematic, agnostic study of genetic predictors of toxicity from anticancer therapy).

Cheng TH, Gorman M, Martin L, Barclay E, Casey G, Colon Cancer Family Registry, CGEMS, Saunders B, Thomas H, Clark S, Tomlinson I. 2015. Common colorectal cancer risk alleles contribute to the multiple colorectal adenoma phenotype, but do not influence colonic polyposis in FAP. Eur J Hum Genet, 23 (2), pp. 260-263. | Show Abstract | Read more

The presence of multiple (5-100) colorectal adenomas suggests an inherited predisposition, but the genetic aetiology of this phenotype is undetermined if patients test negative for Mendelian polyposis syndromes such as familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP). We investigated whether 18 common colorectal cancer (CRC) predisposition single-nucleotide polymorphisms (SNPs) could help to explain some cases with multiple adenomas who phenocopied FAP or MAP, but had no pathogenic APC or MUTYH variant. No multiple adenoma case had an outlying number of CRC SNP risk alleles, but multiple adenoma patients did have a significantly higher number of risk alleles than population controls (P=5.7 × 10(-7)). The association was stronger in those with ≥10 adenomas. The CRC SNPs accounted for 4.3% of the variation in multiple adenoma risk, with three SNPs (rs6983267, rs10795668, rs3802842) explaining 3.0% of the variation. In FAP patients, the CRC risk score did not differ significantly from the controls, as we expected given the overwhelming effect of pathogenic germline APC variants on the phenotype of these cases. More unexpectedly, we found no evidence that the CRC SNPs act as modifier genes for the number of colorectal adenomas in FAP patients. In conclusion, common colorectal tumour risk alleles contribute to the development of multiple adenomas in patients without pathogenic germline APC or MUTYH variants. This phenotype may have 'polygenic' or monogenic origins. The risk of CRC in relatives of multiple adenoma cases is probably much lower for cases with polygenic disease, and this should be taken into account when counselling such patients.

Fernandez-Rozadilla C, Cazier JB, Tomlinson I, Brea-Fernández A, Lamas MJ, Baiget M, López-Fernández LA, Clofent J et al. 2014. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer Human Genetics, 133 (5), pp. 525-534. | Show Abstract | Read more

Colorectal cancer (CRC) is a complex disease, and therefore its development is determined by the combination of both environmental factors and genetic variants. Although genome-wide association studies (GWAS) of SNP variation have conveniently identified 20 genetic variants so far, a significant proportion of the observed heritability is yet to be explained. Common copy-number variants (CNVs) are one of the most important genomic sources of variability, and hence a potential source to explain part of this missing genetic fraction. Therefore, we have performed a GWAS on CNVs to explore the relationship between common structural variation and CRC development. Phase 1 of the GWAS consisted of 881 cases and 667 controls from a Spanish cohort. Copy-number status was validated by quantitative PCR for each of those common CNVs potentially associated with CRC in phase I. Subsequently, SNPs were chosen as proxies for the validated CNVs for phase II replication (1,342 Spanish cases and 1,874 Spanish controls). Four common CNVs were found to be associated with CRC and were further replicated in Phase II. Finally, we found that SNP rs1944682, tagging a 11q11 CNV, was nominally associated with CRC susceptibility (p value = 0.039; OR = 1.122). This locus has been previously related to extreme obesity phenotypes, which could suggest a relationship between body weight and CRC susceptibility. © 2013 Springer-Verlag Berlin Heidelberg.

Davis H, Lewis A, Behrens A, Tomlinson I. 2014. Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines Gut, 63 (5), pp. 792-799. | Show Abstract | Read more

Objective: FBXW7 encodes the substrate recognition component of a ubiquitin ligase that degrades targets such as Notch1, c-Jun, c-Myc and cyclin E. FBXW7 mutations occur in several tumour types, including colorectal cancers. The FBXW7 mutation spectrum in cancers is unusual. Some tumours have biallelic loss of function mutations but most have monoallelic missense mutations involving specific arginine residues at β-propellor tips involved in substrate recognition. Design: FBXW7 functional studies have generally used null systems. In order to analyse the most common mutations in human tumours, we created a Fbxw7fl(R482Q)/+ mouse and conditionally expressed this mutation in the intestines using Vill-Cre. We compared these mice with heterozygous null (Fbxw7+/-) mutants. Results: A few sizeable intestinal adenomas occurred in approximately 30% of R482Q/+ and Fbxw7+/- mice at age >300 days. Breeding the R482Q allele onto Apc mutant backgrounds led to accelerated morbidity and increased polyp numbers and size. Within the small bowel, polyp distribution was shifted proximally. Elevated levels of two particular Fbxw7 substrates, Klf5 and Tgif1, were found in normal intestine and adenomas of R482Q/+, R482Q/R482Q and Fbxw7-/- mice, but not Fbxw7+/- animals. On the Apc mutant background, Fbxw7+/- mutants had a phenotype intermediate between Fbxw7 wild-type and R482Q/+ mice. Conclusions: Heterozygous Fbxw7 propellor tip (R482Q) mutations promote intestinal tumorigenesis on an Apc mutant background. Klf5 and Tgif1 are strong candidates for mediating this effect. Although heterozygous null Fbxw7 mutations also promote tumour growth, these have a weaker effect than R482Q. These findings explain the FBXW7 mutation spectrum found in human cancers, and emphasise the need for animal models faithfully to reflect human disease.

Kinnersley B, Buch S, Castellví-Bel S, Farrington SM, Forsti A, Hampe J, Hemminki K, Hofstra RM et al. 2014. Re: Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J Natl Cancer Inst, 106 (5), pp. dju086-dju086. | Read more

Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, Arango D, Strausberg RL et al. 2014. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res, 74 (12), pp. 3238-3247. | Show Abstract | Read more

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase ε proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFβ, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses.

Derkach A, Chiang T, Gong J, Addis L, Dobbins S, Tomlinson I, Houlston R, Pal DK, Strug LJ. 2014. Association analysis using next-generation sequence data from publicly available control groups: the robust variance score statistic. Bioinformatics, 30 (15), pp. 2179-2188. | Show Abstract | Read more

MOTIVATION: Sufficiently powered case-control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds. Assuming one can match cases and controls on the basis of ethnicity and other potential confounding factors, and one has access to the aligned reads in both groups, we investigate the effect of systematic differences in read depth and selection threshold when comparing allele frequencies between cases and controls. We propose a novel likelihood-based method, the robust variance score (RVS), that substitutes genotype calls by their expected values given observed sequence data. RESULTS: We show theoretically that the RVS eliminates read depth bias in the estimation of minor allele frequency. We also demonstrate that, using simulated and real NGS data, the RVS method controls Type I error and has comparable power to the 'gold standard' analysis with the true underlying genotypes for both common and rare variants. AVAILABILITY AND IMPLEMENTATION: An RVS R script and instructions can be found at strug.research.sickkids.ca, and at https://github.com/strug-lab/RVS. CONTACT: lisa.strug@utoronto.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Milne RL, Herranz J, Michailidou K, Dennis J, Tyrer JP, Zamora MP, Arias-Perez JI, González-Neira A et al. 2014. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium. Hum Mol Genet, 23 (7), pp. 1934-1946. | Show Abstract | Read more

Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.

Sawyer E, Roylance R, Petridis C, Brook MN, Nowinski S, Papouli E, Fletcher O, Pinder S et al. 2014. Genetic predisposition to in situ and invasive lobular carcinoma of the breast. PLoS Genet, 10 (4), pp. e1004285. | Show Abstract | Read more

Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.

Iraqi FA, Athamni H, Dorman A, Salymah Y, Tomlinson I, Nashif A, Shusterman A, Weiss E, Houri-Haddad Y, Mott R, Soller M. 2014. Heritability and coefficient of genetic variation analyses of phenotypic traits provide strong basis for high-resolution QTL mapping in the Collaborative Cross mouse genetic reference population Mammalian Genome, 25 (3-4), pp. 109-119. | Show Abstract | Read more

Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual's life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known "coefficient of genetic variation," demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes. © 2014 Springer Science+Business Media.

Rosmarin D, Palles C, Pagnamenta A, Kaur K, Pita G, Martin M, Domingo E, Jones A et al. 2015. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut, 64 (1), pp. 111-120. | Show Abstract | Read more

OBJECTIVE: Capecitabine is an oral 5-fluorouracil (5-FU) pro-drug commonly used to treat colorectal carcinoma and other tumours. About 35% of patients experience dose-limiting toxicity. The few proven genetic biomarkers of 5-FU toxicity are rare variants and polymorphisms, respectively, at candidate loci dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS). DESIGN: We investigated 1456 polymorphisms and rare coding variants near 25 candidate 5-FU pathway genes in 968 UK patients from the QUASAR2 clinical trial. RESULTS: We identified the first common DPYD polymorphisms to be consistently associated with capecitabine toxicity, rs12132152 (toxicity allele frequency (TAF)=0.031, OR=3.83, p=4.31×10(-6)) and rs12022243 (TAF=0.196, OR=1.69, p=2.55×10(-5)). rs12132152 was particularly strongly associated with hand-foot syndrome (OR=6.1, p=3.6×10(-8)). The rs12132152 and rs12022243 associations were independent of each other and of previously reported DPYD toxicity variants. Next-generation sequencing additionally identified rare DPYD variant p.Ala551Thr in one patient with severe toxicity. Using functional predictions and published data, we assigned p.Ala551Thr as causal for toxicity. We found that polymorphism rs2612091, which lies within an intron of ENOSF1, was also associated with capecitabine toxicity (TAF=0.532, OR=1.59, p=5.28×10(-6)). ENSOF1 is adjacent to TYMS and there is a poorly characterised regulatory interaction between the two genes/proteins. Unexpectedly, rs2612091 fully explained the previously reported associations between capecitabine toxicity and the supposedly functional TYMS variants, 5'VNTR 2R/3R and 3'UTR 6 bp ins-del. rs2612091 genotypes were, moreover, consistently associated with ENOSF1 mRNA levels, but not with TYMS expression. CONCLUSIONS: DPYD harbours rare and common capecitabine toxicity variants. The toxicity polymorphism in the TYMS region may actually act through ENOSF1.

Pardini B, Verderio P, Pizzamiglio S, Nici C, Maiorana MV, Naccarati A, Vodickova L, Vymetalkova V et al. 2014. Association between CASP8 -652 6N Del Polymorphism (rs3834129) and Colorectal Cancer Risk: Results from a Multi-Centric Study (vol 9, e85538, 2014) PLOS ONE, 9 (3), pp. e91310-e91310. | Read more

Rosmarin D, Palles C, Church D, Domingo E, Jones A, Johnstone E, Wang H, Love S et al. 2014. Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol, 32 (10), pp. 1031-1039. | Show Abstract | Read more

PURPOSE: Fluourouracil (FU) is a mainstay of chemotherapy, although toxicities are common. Genetic biomarkers have been used to predict these adverse events, but their utility is uncertain. PATIENTS AND METHODS: We tested candidate polymorphisms identified from a systematic literature search for associations with capecitabine toxicity in 927 patients with colorectal cancer in the Quick and Simple and Reliable trial (QUASAR2). We then performed meta-analysis of QUASAR2 and 16 published studies (n = 4,855 patients) to examine the polymorphisms in various FU monotherapy and combination therapy regimens. RESULTS: Global capecitabine toxicity (grades 0/1/2 v grades 3/4/5) was associated with the rare, functional DPYD alleles 2846T>A and *2A (combined odds ratio, 5.51; P = .0013) and with the common TYMS polymorphisms 5'VNTR2R/3R and 3'UTR 6bp ins-del (combined odds ratio, 1.31; P = 9.4 × 10(-6)). There was weaker evidence that these polymorphisms predict toxicity from bolus and infusional FU monotherapy. No good evidence of association with toxicity was found for the remaining polymorphisms, including several currently included in predictive kits. No polymorphisms were associated with toxicity in combination regimens. CONCLUSION: A panel of genetic biomarkers for capecitabine monotherapy toxicity would currently comprise only the four DPYD and TYMS variants above. We estimate this test could provide 26% sensitivity, 86% specificity, and 49% positive predictive value-better than most available commercial kits, but suboptimal for clinical use. The test panel might be extended to include additional, rare DPYD variants functionally equivalent to *2A and 2846A, though insufficient evidence supports its use in bolus, infusional, or combination FU. There remains a need to identify further markers of FU toxicity for all regimens.

Petridis C, Shinomiya I, Simpson MA, Tomlinson I, Roylance R, Sawyer EJ. 2014. CDH1 and genetic predisposition to lobular breast carcinoma EUROPEAN JOURNAL OF CANCER, 50 pp. S79-S79.

Heitzer E, Tomlinson I. 2014. Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev, 24 (1), pp. 107-113. | Show Abstract | Read more

Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions.

Agarwal D, Pineda S, Michailidou K, Herranz J, Pita G, Moreno LT, Alonso MR, Dennis J et al. 2014. FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer, 110 (4), pp. 1088-1100. | Show Abstract | Read more

BACKGROUND: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. METHODS: Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. RESULTS: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. CONCLUSION: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2.

Cited:

26

Scopus

Heitzer E, Tomlinson I. 2014. Replicative DNA polymerase mutations in cancer Current Opinion in Genetics and Development, 24 (1), pp. 107-113. | Show Abstract | Read more

Three DNA polymerases - Pol α, Pol δ and Pol e{open} - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol e{open} take over on the lagging and leading strand respectively. Pol δ and Pol e{open} perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol e{open} homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. © 2014 The Authors.

Pardini B, Verderio P, Pizzamiglio S, Nici C, Maiorana MV, Naccarati A, Vodickova L, Vymetalkova V et al. 2014. Association between CASP8 -652 6N del polymorphism (rs3834129) and colorectal cancer risk: results from a multi-centric study. PLoS One, 9 (1), pp. e85538. | Show Abstract | Read more

The common -652 6N del variant in the CASP8 promoter (rs3834129) has been described as a putative low-penetrance risk factor for different cancer types. In particular, some studies suggested that the deleted allele (del) was inversely associated with CRC risk while other analyses failed to confirm this. Hence, to better understand the role of this variant in the risk of developing CRC, we performed a multi-centric case-control study. In the study, the variant -652 6N del was genotyped in a total of 6,733 CRC cases and 7,576 controls recruited by six different centers located in Spain, Italy, USA, England, Czech Republic and the Netherlands collaborating to the international consortium COGENT (COlorectal cancer GENeTics). Our analysis indicated that rs3834129 was not associated with CRC risk in the full data set. However, the del allele was under-represented in one set of cases with a family history of CRC (per allele model OR = 0.79, 95% CI = 0.69-0.90) suggesting this allele might be a protective factor versus familial CRC. Since this multi-centric case-control study was performed on a very large sample size, it provided robust clarification of the effect of rs3834129 on the risk of developing CRC in Caucasians.

Allen MD, Luong P, Hudson C, Leyton J, Delage B, Ghazaly E, Cutts R, Yuan M et al. 2014. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res, 74 (3), pp. 896-907. | Show Abstract | Read more

Targeted therapies have yet to have significant impact on the survival of patients with bladder cancer. In this study, we focused on the urea cycle enzyme argininosuccinate synthetase 1 (ASS1) as a therapeutic target in bladder cancer, based on our discovery of the prognostic and functional import of ASS1 in this setting. ASS1 expression status in bladder tumors from 183 Caucasian and 295 Asian patients was analyzed, along with its hypothesized prognostic impact and association with clinicopathologic features, including tumor size and invasion. Furthermore, the genetics, biology, and therapeutic implications of ASS1 loss were investigated in urothelial cancer cells. We detected ASS1 negativity in 40% of bladder cancers, in which multivariate analysis indicated worse disease-specific and metastasis-free survival. ASS1 loss secondary to epigenetic silencing was accompanied by increased tumor cell proliferation and invasion, consistent with a tumor-suppressor role for ASS1. In developing a treatment approach, we identified a novel targeted antimetabolite strategy to exploit arginine deprivation with pegylated arginine deiminase (ADI-PEG20) as a therapeutic. ADI-PEG20 was synthetically lethal in ASS1-methylated bladder cells and its exposure was associated with a marked reduction in intracellular levels of thymidine, due to suppression of both uptake and de novo synthesis. We found that thymidine uptake correlated with thymidine kinase-1 protein levels and that thymidine levels were imageable with [(18)F]-fluoro-L-thymidine (FLT)-positron emission tomography (PET). In contrast, inhibition of de novo synthesis was linked to decreased expression of thymidylate synthase and dihydrofolate reductase. Notably, inhibition of de novo synthesis was associated with potentiation of ADI-PEG20 activity by the antifolate drug pemetrexed. Taken together, our findings argue that arginine deprivation combined with antifolates warrants clinical investigation in ASS1-negative urothelial and related cancers, using FLT-PET as an early surrogate marker of response.

Menko FH, Maher ER, Schmidt LS, Middelton LA, Aittomäki K, Tomlinson I, Richard S, Linehan WM. 2014. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment Familial Cancer, 13 (4), pp. 637-644. | Show Abstract | Read more

© 2014, Springer Science+Business Media Dordrecht.Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant condition in which susceptible individuals are at risk for the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene which inactivate the enzyme and alters the function of the tricarboxylic acid (Krebs) cycle. Issues surrounding surveillance and treatment for HLRCC-associated renal cell cancer were considered as part of a recent international symposium on HLRCC. The management protocol proposed in this article is based on a literature review and a consensus meeting. The lifetime renal cancer risk for FH mutation carriers is estimated to be 15 %. In view of the potential for early onset of RCC in HLRCC, periodic renal imaging and, when available, predictive testing for a FH mutation is recommended from 8 to 10 years of age. However, the small risk of renal cell cancer in the 10–20 years age range and the potential drawbacks of screening should be carefully discussed on an individual basis. Surveillance preferably consists of annual abdominal MRI. Treatment of renal tumours should be prompt and generally consist of wide-margin surgical excision and consideration of retroperitoneal lymph node dissection. The choice for systemic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts of families.

Alsolami S, El-Bahrawy M, Kalloger SE, AlDaoud N, Pathak TB, Cheung CT, Mulligan AM, Tomlinson IP et al. 2014. Current morphologic criteria perform poorly in identifying hereditary leiomyomatosis and renal cell carcinoma syndrome-associated uterine leiomyomas International Journal of Gynecological Pathology, 33 (6), pp. 560-567. | Show Abstract | Read more

© 2014 International Society of Gynecological Pathologists.The contemporary oncologic pathology report conveys diagnostic, prognostic, predictive, and hereditary predisposition information. Each component may be premised on a morphologic feature or a biomarker. Clinical validity and reproducibility are paramount as is standardization of reporting and clinical response to ensure individualization of patient care. Regarding hereditary predisposition, morphology-based genetic referral systems in some instances have eclipsed genealogy-based systems, for example, cell type in ovarian cancer and BRCA screening. In other instances such as Lynch syndrome, morphology-based schemas supplement clinical schemas and there is an emerging standard of care for reflex biomarker testing. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome predisposes patients to uterine and cutaneous leiomyomas (LMs) and renal cell carcinomas (RCCs). Several authors have emphasized the role pathologists may play in identifying this syndrome by recognizing the morphologic characteristics of syndromic uterine LMs and RCCs. Recently immunohistochemical overexpression of S-(2- Succinyl) cysteine (2SC) has been demonstrated as a robust biomarker of mutation status in tumors from HLRCC patients. In this blinded control-cohort study we demonstrate that the proposed morphologic criteria used to identify uterine LMs in HLRCC syndrome are largely irreproducible among pathologists and lack sufficient robustness to serve as a trigger to triage cases for 2SC immunohistochemistry or patients for further family/personal history inquiry. Although refinement of morphologic criteria can be considered, in view of the availability of a clinically robust biomarker, consideration should be given to reflex testing of uterine LMs with an appropriate age cut off or in the setting of a suspicious family history.

Johnson N, Dudbridge F, Orr N, Gibson L, Jones ME, Schoemaker MJ, Folkerd EJ, Haynes BP et al. 2014. Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Res, 16 (3), pp. R51. | Show Abstract | Read more

INTRODUCTION: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years. METHODS: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics. RESULTS: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P(trend) = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P(trend) = 0.005) but not cases (P(trend) = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P(het) = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (OR(het) = 0.84, 95% CI 0.75, 0.94; OR(hom) = 0.81, 95% CI 0.51, 1.30; P(trend) = 0.002) but not for those who had their menarche age ≤11 years (OR(het) = 1.06, 95% CI 0.95, 1.19, OR(hom) = 1.07, 95% CI 0.67, 1.72; P(trend) = 0.29). CONCLUSIONS: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.

Khan S, Greco D, Michailidou K, Milne RL, Muranen TA, Heikkinen T, Aaltonen K, Dennis J et al. 2014. MicroRNA related polymorphisms and breast cancer risk. PLoS One, 9 (11), pp. e109973. | Show Abstract | Read more

Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, Kar S, Hillman KM et al. 2014. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun, 4 pp. 4999. | Show Abstract | Read more

GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.

Kämpjärvi K, Park MJ, Mehine M, Kim NH, Clark AD, Bützow R, Böhling T, Böhm J et al. 2014. Mutations in exon 1 highlight the role of MED12 in uterine leiomyomas Human Mutation, 35 (9), pp. 1136-1141. | Show Abstract | Read more

Mediator regulates transcription by connecting gene-specific transcription factors to the RNA polymerase II initiation complex. We recently discovered by exome sequencing that specific exon 2 mutations in mediator complex subunit 12 (MED12) are extremely common in uterine leiomyomas. Subsequent screening studies have focused on this mutational hot spot, and mutations have been detected in uterine leiomyosarcomas, extrauterine leiomyomas and leiomyosarcomas, endometrial polyps, and colorectal cancers. All mutations have been missense changes or in-frame insertions/deletions. Here, we have analyzed 611 samples representing all above-mentioned tumor types for possible exon 1 mutations. Five mutations were observed, all of which were in-frame insertion/deletions in uterine leiomyomas. Transcriptome-wide expression data revealed that MED12 exon 1 and exon 2 mutations lead to the same unique global gene expression pattern with RAD51B being the most upregulated gene. Immunoprecipitation and kinase activity assays showed that both exon 1 and exon 2 mutations disrupt the interaction between MED12 and Cyclin C and CDK8/19 and abolish the mediator-associated CDK kinase activity. These results further emphasize the role of MED12 in uterine leiomyomas, show that exon 1 and exon 2 exert their tumorigenic effect in similar manner, and stress that exon 1 should be included in subsequent MED12 screenings. © 2014 WILEY PERIODICALS, INC.

Lewis A, Freeman-Mills L, de la Calle-Mustienes E, Giráldez-Pérez RM, Davis H, Jaeger E, Becker M, Hubner NC et al. 2014. A polymorphic enhancer near GREM1 influences bowel cancer risk through differential CDX2 and TCF7L2 binding. Cell Rep, 8 (4), pp. 983-990. | Show Abstract | Read more

A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes a Mendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ∼20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences in GREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in Apc(Min) mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors.

Kämpjärvi K, Park MJ, Mehine M, Kim NH, Clark AD, Bützow R, Böhling T, Böhm J et al. 2014. Mutations in Exon 1 Highlight the Role of MED12 in Uterine Leiomyomas Human Mutation, 35 (9), pp. 1136-1141. | Show Abstract | Read more

Mediator regulates transcription by connecting gene-specific transcription factors to the RNA polymerase II initiation complex. We recently discovered by exome sequencing that specific exon 2 mutations in mediator complex subunit 12 (MED12) are extremely common in uterine leiomyomas. Subsequent screening studies have focused on this mutational hot spot, and mutations have been detected in uterine leiomyosarcomas, extrauterine leiomyomas and leiomyosarcomas, endometrial polyps, and colorectal cancers. All mutations have been missense changes or in-frame insertions/deletions. Here, we have analyzed 611 samples representing all above-mentioned tumor types for possible exon 1 mutations. Five mutations were observed, all of which were in-frame insertion/deletions in uterine leiomyomas. Transcriptome-wide expression data revealed that MED12 exon 1 and exon 2 mutations lead to the same unique global gene expression pattern with RAD51B being the most upregulated gene. Immunoprecipitation and kinase activity assays showed that both exon 1 and exon 2 mutations disrupt the interaction between MED12 and Cyclin C and CDK8/19 and abolish the mediator-associated CDK kinase activity. These results further emphasize the role of MED12 in uterine leiomyomas, show that exon 1 and exon 2 exert their tumorigenic effect in similar manner, and stress that exon 1 should be included in subsequent MED12 screenings. Uterine leiomyomas are the most common human tumors with highly specific mutations reported in MED12 exon 2. Here, we show that mutations occur recurrently also in MED12 exon 1. Transcriptome-wide gene expression profiling and functional analyses show that exon 1 and 2 mutations promote tumorigenesis through similar mechanism. These results bring new knowledge on MED12 function and highlight the role of MED12 in human tumorigenesis. © 2014 WILEY PERIODICALS, INC.

Cazier JB, Rao SR, McLean CM, Walker AK, Wright BJ, Jaeger EE, Kartsonaki C, Marsden L et al. 2014. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun, 5 pp. 3756. | Show Abstract | Read more

Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression.

Iraqi FA, Athamni H, Dorman A, Salymah Y, Tomlinson I, Nashif A, Shusterman A, Weiss E, Houri-Haddad Y, Mott R, Soller M. 2014. Heritability and coefficient of genetic variation analyses of phenotypic traits provide strong basis for high-resolution QTL mapping in the Collaborative Cross mouse genetic reference population. Mamm Genome, 25 (3-4), pp. 109-119. | Show Abstract | Read more

Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual's life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H(2)) and by the well-known "coefficient of genetic variation," demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.

Zauber P, Bishop T, Taylor C, Sabbath-Solitare M, Marotta S, Tomlinson I. 2014. Colorectal tumors from APC*I1307K carriers principally harbor somatic APC mutations outside the A8 tract. PLoS One, 9 (1), pp. e84498. | Show Abstract | Read more

PURPOSE: APC*I1307K (c.3920T>A) is an inherited variant associated with colorectal tumour risk found almost exclusively in those of Ashkenazi Jewish ancestry. A single nucleotide substitution creates an oligo-adenine tract (A8) that appears to be inherently prone to further mis-pairing and slippage. The reported multiple tumor phenotype of carriers is not easily reconciled with molecular and population genetics data. We postulated that some c.3920T>A carriers with multiple adenomas have other unidentified APC germ line or somatic mutations. METHODS: DNA from 82 colonic tumours and accompanying normal tissue collected from 29 carriers with multiple colorectal tumors was directly sequenced between codons 716 and 1604. We also assessed APC gene loss of heterozygosity. RESULTS: One patient (3.4%) was found to have an additional APC germ line mutation. Twenty-five of the tumours showed no significant somatic molecular change, 36 showed one change, 20 showed two, and one tumour showed more than 2 changes. Our data suggest a correlation between advancing histology and fewer beta-catenin binding sites remaining in the mutant proteins. CONCLUSIONS: There were no other common germ line variants identified within the region of the APC gene examined, suggesting that any effect from this region on tumour production is attributable to the c.3920T>A allele. Our findings further suggest the only somatic genetic change clearly attributable to the c.3920T>A mutation is the c.3924_3925insA.

Petridis C, Shinomiya I, Kohut K, Gorman P, Caneppele M, Shah V, Troy M, Pinder SE et al. 2014. Germline CDH1 mutations in bilateral lobular carcinoma in situ. Br J Cancer, 110 (4), pp. 1053-1057. | Show Abstract | Read more

BACKGROUND: Invasive lobular breast cancer (ILC) and lobular carcinoma in situ (LCIS) are characterised by loss of E-cadherin expression. However germline CDH1 mutations are rare in cases of ILC with no family history of hereditary diffuse gastric cancer (HDGC) and have not been described in women with LCIS. METHODS: We screened the CDH1 gene in 50 cases of bilateral LCIS/ILC using Sanger sequencing and MLPA. RESULTS: Sanger sequencing revealed four pathogenic germline mutations, including a novel splicing mutation (c.48+1G>A). The remaining three (c.1465insC, c.1942G>T, c.2398delC) have been previously described. All four cases had bilateral LCIS +/- ILC and no family history of gastric cancer. CONCLUSION: CDH1 germline mutations have not been previously described in women with LCIS. We have shown that germline CDH1 mutations are associated with early onset of bilateral LCIS with or without ILC in women without a family history of gastric cancer. CDH1 mutation screening should be considered in women with early onset of bilateral LCIS/ILC with no family history of HDGC.

Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, Bapat B, Bernstein I et al. 2014. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet, 46 (2), pp. 107-115. | Show Abstract | Read more

The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.

Whiffin N, Dobbins SE, Hosking FJ, Palles C, Tenesa A, Wang Y, Farrington SM, Jones AM et al. 2013. Deciphering the genetic architecture of low-penetrance susceptibility to colorectal cancer. Hum Mol Genet, 22 (24), pp. 5075-5082. | Show Abstract | Read more

Recent genome-wide association studies (GWASs) have identified common variants at 16 autosomal regions influencing the risk of developing colorectal cancer (CRC). To decipher the genetic basis of the association signals at these loci, we performed a meta-analysis of data from five GWASs, totalling 5626 cases and 7817 controls, using imputation to recover un-typed genotypes. To enhance our ability to discover low-frequency risk variants, in addition to using 1000 Genomes Project data as a reference panel, we made use of high-coverage sequencing data on 253 individuals, 199 with early-onset familial CRC. For 13 of the regions, it was possible to refine the association signal identifying a smaller region of interest likely to harbour the functional variant. Our analysis did not provide evidence that any of the associations at the 16 loci being a consequence of synthetic associations rather than linkage disequilibrium with a common risk variant.

Cited:

24

Scopus

Meyer KB, O’Reilly M, Michailidou K, Carlebur S, Edwards SL, French JD, Prathalingham R, Dennis J et al. 2013. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1 The American Journal of Human Genetics, 93 (6), pp. 1046-1060. | Show Abstract | Read more

The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. © 2013 The American Society of Human Genetics.

Beggs AD, Domingo E, Abulafi M, Hodgson SV, Tomlinson IPM. 2013. A study of genomic instability in early preneoplastic colonic lesions Oncogene, 32 (46), pp. 5333-5337. | Show Abstract | Read more

It is difficult to explain the differential rates of progression of premalignant colonic lesions and differences in behaviour of morphologically similar lesions. Heterogeneity for microsatellite instability (MSI) and promoter methylation in driving these phenomena forward may explain this; however, no previous analysis has examined this in detail at the gland level, the smallest unit of colorectal premalignant lesions. We aimed to carry out an analysis of gland level genomic instability for MSI and promoter methylation. MSI occurred significantly more frequently (20%) in colonic glands than has previously been observed in whole colorectal polyps. Significant promoter methylation was seen in MLH1, PMS2, MLH3 and MSH3 as well as significant heterogeneity for both MSI and promoter methylation. Methylation and MSI may have a significant role in driving forward colorectal carcinogenesis, although in the case of MSI, this association is less clear as it occurs significantly more frequently than previously thought, and may simply be a passenger in the adenoma-carcinoma sequence. Promoter methylation in MLH1, MLH3, MSH3 and PMS2 was also found to be significantly associated with MSI and should be investigated further. A total of 273 colorectal glands (126 hyperplastic, 147 adenomatous) were isolated via laser capture microdissection (targeted at regions of MLH1 loss) from 93 colonic polyps and tested for MSI, and promoter methylation of the DNA mismatch repair genes MLH1, MSH2, MLH3, MSH6, PMS2, MGMT and MLH3 via methylation specific multiplex ligation-dependent probe amplification. Logistic regression modelling was then used to identify significant associations between promoter methylation and gland histological type and MSI status. © 2013 Macmillan Publishers Limited.

Fernandez-Rozadilla C, Cazier JB, Tomlinson I, Brea-Fernández A, Lamas MJ, Baiget M, López-Fernández LA, Clofent J et al. 2014. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum Genet, 133 (5), pp. 525-534. | Show Abstract | Read more

Colorectal cancer (CRC) is a complex disease, and therefore its development is determined by the combination of both environmental factors and genetic variants. Although genome-wide association studies (GWAS) of SNP variation have conveniently identified 20 genetic variants so far, a significant proportion of the observed heritability is yet to be explained. Common copy-number variants (CNVs) are one of the most important genomic sources of variability, and hence a potential source to explain part of this missing genetic fraction. Therefore, we have performed a GWAS on CNVs to explore the relationship between common structural variation and CRC development. Phase 1 of the GWAS consisted of 881 cases and 667 controls from a Spanish cohort. Copy-number status was validated by quantitative PCR for each of those common CNVs potentially associated with CRC in phase I. Subsequently, SNPs were chosen as proxies for the validated CNVs for phase II replication (1,342 Spanish cases and 1,874 Spanish controls). Four common CNVs were found to be associated with CRC and were further replicated in Phase II. Finally, we found that SNP rs1944682, tagging a 11q11 CNV, was nominally associated with CRC susceptibility (p value = 0.039; OR = 1.122). This locus has been previously related to extreme obesity phenotypes, which could suggest a relationship between body weight and CRC susceptibility.

Vaughan-Shaw PG, Borley NR, Tomlinson IP, Wheeler JM. 2013. Polypectomy in patients with a family history of colorectal cancer may lead to inadequate surveillance and missed cancers in their kindred. Colorectal Dis, 15 (11), pp. 1452-1453. | Read more

Cited:

33

Scopus

Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J et al. 2013. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations American Journal of Gastroenterology, 108 (11), pp. 1785-1793. | Show Abstract | Read more

OBJECTIVES:Microsatellite instability (MSI) is an established marker of good prognosis in colorectal cancer (CRC). Chromosomal instability (CIN) is strongly negatively associated with MSI and has been shown to be a marker of poor prognosis in a small number of studies. However, a substantial group of double-negative (MSI-/CIN-) CRCs exists. The prognosis of these patients is unclear. Furthermore, MSI and CIN are each associated with specific molecular changes, such as mutations in KRAS and BRAF, that have been associated with prognosis. It is not known which of MSI, CIN, and the specific gene mutations are primary predictors of survival.METHODS:We evaluated the prognostic value (disease-free survival, DFS) of CIN, MSI, mutations in KRAS, NRAS, BRAF, PIK3CA, FBXW7, and TP53, and chromosome 18q loss-of-heterozygosity (LOH) in 822 patients from the VICTOR trial of stage II/III CRC. We followed up promising associations in an Australian community-based cohort (N=375).RESULTS:In the VICTOR patients, no specific mutation was associated with DFS, but individually MSI and CIN showed significant associations after adjusting for stage, age, gender, tumor location, and therapy. A combined analysis of the VICTOR and community-based cohorts showed that MSI and CIN were independent predictors of DFS (for MSI, hazard ratio (HR)=0.58, 95% confidence interval (CI) 0.36-0.93, and P=0.021; for CIN, HR=1.54, 95% CI 1.14-2.08, and P=0.005), and joint CIN/MSI testing significantly improved the prognostic prediction of MSI alone (P=0.028). Higher levels of CIN were monotonically associated with progressively poorer DFS, and a semi-quantitative measure of CIN was a better predictor of outcome than a simple CIN+/-variable. All measures of CIN predicted DFS better than the recently described Watanabe LOH ratio.CONCLUSIONS:MSI and CIN are independent predictors of DFS for stage II/III CRC. Prognostic molecular tests for CRC relapse should currently use MSI and a quantitative measure of CIN rather than specific gene mutations.

Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, Davies B, Peterse EF et al. 2013. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell, 155 (2), pp. 410-422. | Show Abstract | Read more

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.

Domingo E, Church DN, Sieber O, Ramamoorthy R, Yanagisawa Y, Johnstone E, Davidson B, Kerr DJ, Tomlinson IP, Midgley R. 2013. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol, 31 (34), pp. 4297-4305. | Show Abstract | Read more

PURPOSE: Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) protect against colorectal cancer (CRC) and are associated with reduced disease recurrence and improved outcome after primary treatment. However, toxicities of NSAIDs have limited their use as antineoplastic therapy. Recent data have suggested that the benefit of aspirin after CRC diagnosis is limited to patients with PIK3CA-mutant cancers. We sought to determine the predictive utility of PIK3CA mutation for benefit from both cyclooxygenase-2 inhibition and aspirin. METHODS: We performed molecular analysis of tumors from 896 participants in the Vioxx in Colorectal Cancer Therapy: Definition of Optimal Regime (VICTOR) trial, a large randomized trial comparing rofecoxib with placebo after primary CRC resection. We compared relapse-free survival and overall survival between rofecoxib therapy and placebo and between the use and nonuse of low-dose aspirin, according to tumor PIK3CA mutation status. RESULTS: We found no evidence of a greater benefit from rofecoxib treatment compared with placebo in patients whose tumors had PIK3CA mutations (multivariate adjusted hazard ratio [HR], 1.2; 95% CI, 0.53 to 2.72; P = .66; (P)INTERACTION = .47) compared with patients with PIK3CA wild-type cancers (HR, 0.87; 95% CI, 0.64 to 1.16; P = .34). In contrast, regular aspirin use after CRC diagnosis was associated with a reduced rate of CRC recurrence in patients with PIK3CA-mutant cancers (HR, 0.11; 95% CI, 0.001 to 0.832; P = .027; (P)INTERACTION = .024) but not in patients lacking tumor PIK3CA mutation (HR, 0.92; 95% CI, 0.60 to 1.42; P = .71). CONCLUSION: Although tumor PIK3CA mutation does not predict benefit from rofecoxib treatment, it merits further evaluation as a predictive biomarker for aspirin therapy. Our findings are concordant with recent data and support the prospective investigation of adjuvant aspirin in PIK3CA-mutant CRC.

Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J et al. 2013. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol, 108 (11), pp. 1785-1793. | Show Abstract | Read more

OBJECTIVES: Microsatellite instability (MSI) is an established marker of good prognosis in colorectal cancer (CRC). Chromosomal instability (CIN) is strongly negatively associated with MSI and has been shown to be a marker of poor prognosis in a small number of studies. However, a substantial group of "double-negative" (MSI-/CIN-) CRCs exists. The prognosis of these patients is unclear. Furthermore, MSI and CIN are each associated with specific molecular changes, such as mutations in KRAS and BRAF, that have been associated with prognosis. It is not known which of MSI, CIN, and the specific gene mutations are primary predictors of survival. METHODS: We evaluated the prognostic value (disease-free survival, DFS) of CIN, MSI, mutations in KRAS, NRAS, BRAF, PIK3CA, FBXW7, and TP53, and chromosome 18q loss-of-heterozygosity (LOH) in 822 patients from the VICTOR trial of stage II/III CRC. We followed up promising associations in an Australian community-based cohort (N=375). RESULTS: In the VICTOR patients, no specific mutation was associated with DFS, but individually MSI and CIN showed significant associations after adjusting for stage, age, gender, tumor location, and therapy. A combined analysis of the VICTOR and community-based cohorts showed that MSI and CIN were independent predictors of DFS (for MSI, hazard ratio (HR)=0.58, 95% confidence interval (CI) 0.36-0.93, and P=0.021; for CIN, HR=1.54, 95% CI 1.14-2.08, and P=0.005), and joint CIN/MSI testing significantly improved the prognostic prediction of MSI alone (P=0.028). Higher levels of CIN were monotonically associated with progressively poorer DFS, and a semi-quantitative measure of CIN was a better predictor of outcome than a simple CIN+/- variable. All measures of CIN predicted DFS better than the recently described Watanabe LOH ratio. CONCLUSIONS: MSI and CIN are independent predictors of DFS for stage II/III CRC. Prognostic molecular tests for CRC relapse should currently use MSI and a quantitative measure of CIN rather than specific gene mutations.

Picelli S, Lorenzo Bermejo J, Chang-Claude J, Hoffmeister M, Fernández-Rozadilla C, Carracedo A, Castells A, Castellví-Bel S et al. 2013. Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility. PLoS One, 8 (9), pp. e72091. | Show Abstract | Read more

In the last four years, Genome-Wide Association Studies (GWAS) have identified sixteen low-penetrance polymorphisms on fourteen different loci associated with colorectal cancer (CRC). Due to the low risks conferred by known common variants, most of the 35% broad-sense heritability estimated by twin studies remains unexplained. Recently our group performed a case-control study for eight Single Nucleotide Polymorphisms (SNPs) in 4 CRC genes. The present investigation is a follow-up of that study. We have genotyped six SNPs that showed a positive association and carried out a meta-analysis based on eight additional studies comprising in total more than 8000 cases and 6000 controls. The estimated recessive odds ratio for one of the SNPs, rs3219489 (MUTYH Q338H), decreased from 1.52 in the original Swedish study, to 1.18 in the Swedish replication, and to 1.08 in the initial meta-analysis. Since the corresponding summary probability value was 0.06, we decided to retrieve additional information for this polymorphism. The incorporation of six further studies resulted in around 13000 cases and 13000 controls. The newly updated OR was 1.03. The results from the present large, multicenter study illustrate the possibility of decreasing effect sizes with increasing samples sizes. Phenotypic heterogeneity, differential environmental exposures, and population specific linkage disequilibrium patterns may explain the observed difference of genetic effects between Sweden and the other investigated cohorts.

Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafà R et al. 2013. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res, 23 (9), pp. 1446-1461. | Show Abstract | Read more

The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.

Ulahannan D, Kovac MB, Mulholland PJ, Cazier JB, Tomlinson I. 2013. Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer, 109 (4), pp. 827-835. | Show Abstract | Read more

Next-generation sequencing (NGS) of cancer genomes promises to revolutionise oncology, with the ability to design and use targeted drugs, to predict outcome and response, and to classify tumours. It is continually becoming cheaper, faster and more reliable, with the capability to identify rare yet clinically important somatic mutations. Technical challenges include sequencing samples of low quality and/or quantity, reliable identification of structural and copy number variation, and assessment of intratumour heterogeneity. Once these problems are overcome, the use of the data to guide clinical decision making is not straightforward, and there is a risk of premature use of molecular changes to guide patient management in the absence of supporting evidence. Paradoxically, NGS may simply move the bottleneck of personalised medicine from data acquisition to the identification of reliable biomarkers. Standardised cancer NGS data collection on an international scale would be a significant step towards optimising patient care.

Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L et al. 2013. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet, 22 (14), pp. 2820-2828. | Show Abstract | Read more

Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ε, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5-10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.

Fernandez-Rozadilla C, Cazier JB, Moreno V, Crous-Bou M, Guinó E, Durán G, Lamas MJ, López R et al. 2013. Pharmacogenomics in colorectal cancer: A genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration Pharmacogenomics Journal, 13 (3), pp. 209-217. | Show Abstract | Read more

The development of genotyping technologies has allowed for wider screening for inherited causes of variable outcomes following drug administration. We have performed a genome-wide association study (GWAS) on 221 colorectal cancer (CRC) patients that had been treated with 5-fluorouracil (5-FU), either alone or in combination with oxaliplatin (FOLFOX). A validation set of 791 patients was also studied. Seven SNPs (rs16857540, rs2465403, rs10876844, rs10784749, rs17626122, rs7325568 and rs4243761) showed evidence of association (pooled P-values 0.020, 9.426E-03, 0.010, 0.017, 0.042, 2.302E-04, 2.803E-03) with adverse drug reactions (ADRs). This is the first study to explore the genetic basis of inter-individual variation in toxicity responses to the administration of 5-FU or FOLFOX in CRC patients on a genome-wide scale. © 2013 Macmillan Publishers Limited. All rights reserved 1470-269X/13.

Enciso-Mora V, Hosking FJ, Kinnersley B, Wang Y, Shete S, Zelenika D, Broderick P, Idbaih A et al. 2013. Deciphering the 8q24.21 association for glioma. Hum Mol Genet, 22 (11), pp. 2293-2302. | Show Abstract | Read more

We have previously identified tagSNPs at 8q24.21 influencing glioma risk. We have sought to fine-map the location of the functional basis of this association using data from four genome-wide association studies, comprising a total of 4147 glioma cases and 7435 controls. To improve marker density across the 700 kb region, we imputed genotypes using 1000 Genomes Project data and high-coverage sequencing data generated on 253 individuals. Analysis revealed an imputed low-frequency SNP rs55705857 (P = 2.24 × 10(-38)) which was sufficient to fully capture the 8q24.21 association. Analysis by glioma subtype showed the association with rs55705857 confined to non-glioblastoma multiforme (non-GBM) tumours (P = 1.07 × 10(-67)). Validation of the non-GBM association was shown in three additional datasets (625 non-GBM cases, 2412 controls; P = 1.41 × 10(-28)). In the pooled analysis, the odds ratio for low-grade glioma associated with rs55705857 was 4.3 (P = 2.31 × 10(-94)). rs55705857 maps to a highly evolutionarily conserved sequence within the long non-coding RNA CCDC26 raising the possibility of direct functionality. These data provide additional insights into the aetiological basis of glioma development.

Cited:

37

Scopus

Dunlop MG, Tenesa A, Farrington SM, Ballereau S, Brewster DH, Koessler T, Pharoah P, Schafmayer C et al. 2013. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42 103 individuals Gut, 62 (6), pp. 871-881. | Show Abstract | Read more

Objective: Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. Design: Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39 266) and in combination with gender, age and FH (n=11 324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. Results: The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2×10-16), confirmed in external validation sets (Sweden p=1.2×10-6, Finland p=2×10-5). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. Conclusion: Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.

Vaughan-Shaw PG, Borley NR, Tomlinson IP, Wheeler JM. 2013. POLYPECTOMY MAY LEAD TO INADEQUATE SURVEILLANCE OF PATIENTS WITH A FAMILY HISTORY OF COLORECTAL CANCER GUT, 62 (Suppl 1), pp. A216-A216. | Read more

Boitsova T, Rafferty H, Davis H, Bardella C, Gill P, East J, Tomlinson I, Chetty R, Silver A, Leedham S. 2013. BONE MORPHOGENETIC PROTEIN (BMP) PATHWAY DYSREGULATION SUBVERTS ONCOGENE INDUCED SENESCENCE MECHANISMS IN THE SERRATED PATHWAY OF TUMOURIGENESIS GUT, 62 (Suppl 1), pp. A200-A200. | Read more

Davis H, Lewis A, Behrens A, Tomlinson I. 2014. Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut, 63 (5), pp. 792-799. | Show Abstract | Read more

OBJECTIVE: FBXW7 encodes the substrate recognition component of a ubiquitin ligase that degrades targets such as Notch1, c-Jun, c-Myc and cyclin E. FBXW7 mutations occur in several tumour types, including colorectal cancers. The FBXW7 mutation spectrum in cancers is unusual. Some tumours have biallelic loss of function mutations but most have monoallelic missense mutations involving specific arginine residues at β-propellor tips involved in substrate recognition. DESIGN: FBXW7 functional studies have generally used null systems. In order to analyse the most common mutations in human tumours, we created a Fbxw7(fl(R482Q))(/+) mouse and conditionally expressed this mutation in the intestines using Vill-Cre. We compared these mice with heterozygous null (Fbxw7(+/-)) mutants. RESULTS: A few sizeable intestinal adenomas occurred in approximately 30% of R482Q/+ and Fbxw7(+/-) mice at age >300 days. Breeding the R482Q allele onto Apc mutant backgrounds led to accelerated morbidity and increased polyp numbers and size. Within the small bowel, polyp distribution was shifted proximally. Elevated levels of two particular Fbxw7 substrates, Klf5 and Tgif1, were found in normal intestine and adenomas of R482Q/+, R482Q/R482Q and Fbxw7(-/-) mice, but not Fbxw7(+/-) animals. On the Apc mutant background, Fbxw7(+/-) mutants had a phenotype intermediate between Fbxw7 wild-type and R482Q/+ mice. CONCLUSIONS: Heterozygous Fbxw7 propellor tip (R482Q) mutations promote intestinal tumorigenesis on an Apc mutant background. Klf5 and Tgif1 are strong candidates for mediating this effect. Although heterozygous null Fbxw7 mutations also promote tumour growth, these have a weaker effect than R482Q. These findings explain the FBXW7 mutation spectrum found in human cancers, and emphasise the need for animal models faithfully to reflect human disease.

Willis L, Graham TA, Alarcón T, Alison MR, Tomlinson IP, Page KM. 2013. What can be learnt about disease progression in breast cancer dormancy from relapse data? PLoS One, 8 (5), pp. e62320. | Show Abstract | Read more

Breast cancer patients have an anomalously high rate of relapse many years--up to 25 years--after apparently curative surgery removed the primary tumour. Disease progression during the intervening years between resection and relapse is poorly understood. There is evidence that the disease persists as dangerous, tiny metastases that remain at a growth restricted, clinically undetectable size until a transforming event restarts growth. This is the starting point for our study, where patients who have metastases that are all tiny and growth-restricted are said to have cancer dormancy. Can long-term follow-up relapse data from breast cancer patients be used to extract knowledge about the progression of the undetected disease? Here, we evaluate whether this is the case by introducing and analysing four simple mathematical models of cancer dormancy. These models extend the common assumption that a random transforming event, such as a mutation, can restart growth of a tiny, growth-restricted metastasis; thereafter, cancer dormancy progresses to detectable metastasis. We find that physiopathological details, such as the number of random transforming events that metastases must undergo to escape from growth restriction, cannot be extracted from relapse data. This result is unsurprising. However, the same analysis suggested a natural question that does have a surprising answer: why are interesting trends in long-term relapse data not more commonly observed? Further, our models indicate that (a) therapies which induce growth restriction among metastases but do not prevent increases in metastases' tumourigenicity may introduce a time post-surgery when more patients are prone to relapse; and (b), if a number of facts about disease progression are first established, how relapse data might be used to estimate clinically relevant variables, such as the likely numbers of undetected growth-restricted metastases. This work is a necessary, early step in building a quantitative mechanistic understanding of cancer dormancy.

Beggs AD, Jones A, Shepherd N, Arnaout A, Finlayson C, Abulafi AM, Morton DG, Matthews GM, Hodgson SV, Tomlinson IP. 2013. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation. PLoS Genet, 9 (5), pp. e1003488. | Show Abstract | Read more

Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

Briggs S, Tomlinson I. 2013. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol, 230 (2), pp. 148-153. | Show Abstract | Read more

Polymerases ε and δ are the main enzymes that replicate eukaryotic DNA. Accurate replication occurs through Watson-Crick base pairing and also through the action of the polymerases' exonuclease (proofreading) domains. We have recently shown that germline exonuclease domain mutations (EDMs) of POLE and POLD1 confer a high risk of multiple colorectal adenomas and carcinoma (CRC). POLD1 mutations also predispose to endometrial cancer (EC). These mutations are associated with high penetrance and dominant inheritance, although the phenotype can be variable. We have named the condition polymerase proofreading-associated polyposis (PPAP). Somatic POLE EDMs have also been found in sporadic CRCs and ECs, although very few somatic POLD1 EDMs have been detected. Both the germline and the somatic DNA polymerase EDMs cause an 'ultramutated', apparently microsatellite-stable, type of cancer, sometimes leading to over a million base substitutions per tumour. Here, we present the evidence for POLE and POLD1 as important contributors to the pathogenesis of CRC and EC, and highlight some of the key questions in this emerging field.

Fernandez-Rozadilla C, Cazier JB, Tomlinson IP, Carvajal-Carmona LG, Palles C, Lamas MJ, Baiget M, López-Fernández LA et al. 2013. A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genomics, 14 (1), pp. 55. | Show Abstract | Read more

BACKGROUND: Colorectal cancer (CRC) is a disease of complex aetiology, with much of the expected inherited risk being due to several common low risk variants. Genome-Wide Association Studies (GWAS) have identified 20 CRC risk variants. Nevertheless, these have only been able to explain part of the missing heritability. Moreover, these signals have only been inspected in populations of Northern European origin. RESULTS: Thus, we followed the same approach in a Spanish cohort of 881 cases and 667 controls. Sixty-four variants at 24 loci were found to be associated with CRC at p-values <10-5. We therefore evaluated the 24 loci in another Spanish replication cohort (1481 cases and 1850 controls). Two of these SNPs, rs12080929 at 1p33 (Preplication=0.042; Ppooled=5.523x10-03; OR (CI95%)=0.866(0.782-0.959)) and rs11987193 at 8p12 (Preplication=0.039; Ppooled=6.985x10-5; OR (CI95%)=0.786(0.705-0.878)) were replicated in the second Phase, although they did not reach genome-wide statistical significance. CONCLUSIONS: We have performed the first CRC GWAS in a Southern European population and by these means we were able to identify two new susceptibility variants at 1p33 and 8p12 loci. These two SNPs are located near the SLC5A9 and DUSP4 loci, respectively, which could be good functional candidates for the association signals. We therefore believe that these two markers constitute good candidates for CRC susceptibility loci and should be further evaluated in other larger datasets. Moreover, we highlight that were these two SNPs true susceptibility variants, they would constitute a decrease in the CRC missing heritability fraction.

Cited:

65

Scopus

French JD, Ghoussaini M, Edwards SL, Meyer KB, Michailidou K, Ahmed S, Khan S, Maranian MJ et al. 2013. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers The American Journal of Human Genetics, 92 (4), pp. 489-503. | Show Abstract | Read more

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. © 2013 The American Society of Human Genetics.

Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, Orr N, Rhie SK et al. 2013. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet, 45 (4), pp. 392-398e2. | Show Abstract | Read more

Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.

Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, Edwards SL, Pickett HA et al. 2013. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet, 45 (4), pp. 371-384e2. | Show Abstract | Read more

TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOGs, we analyzed ∼480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 × 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 × 10(-8)) and BRCA1 mutation carrier (P = 1.1 × 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 × 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 × 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 × 10(-12)) and BRCA1 mutation carrier (P = 1.6 × 10(-14)) breast and invasive ovarian (P = 1.3 × 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.

Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, Schmidt MK, Chang-Claude J et al. 2013. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet, 45 (4), pp. 353-361e2. | Show Abstract | Read more

Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10(-8)). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility.

French JD, Ghoussaini M, Edwards SL, Meyer KB, Michailidou K, Ahmed S, Khan S, Maranian MJ et al. 2013. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet, 92 (4), pp. 489-503. | Show Abstract | Read more

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.

Cited:

34

Scopus

Beggs AD, Jones A, El-Bahwary M, Abulafi M, Hodgson SV, Tomlinson IPM. 2013. Whole-genome methylation analysis of benign and malignant colorectal tumours Journal of Pathology, 229 (5), pp. 697-704. | Show Abstract | Read more

Changes in DNA methylation, whether hypo- or hypermethylation, have been shown to be associated with the progression of colorectal cancer. Methylation changes substantially in the progression from normal mucosa to adenoma and to carcinoma. This phenomenon has not been studied extensively and studies have been restricted to individual CpG islands, rather than taking a whole-genome approach. We aimed to study genome-wide methylation changes in colorectal cancer. We obtained 10 fresh-frozen normal tissue-cancer sample pairs, and five fresh-frozen adenoma samples. These were run on the lllumina HumanMethylation27 whole-genome methylation analysis system. Differential methylation between normal tissue, adenoma and carcinoma was analysed using Bayesian regression modelling, gene set enrichment analysis (GSEA) and hierarchical clustering (HC). The highest-rated individual gene for differential methylation in carcinomas versus normal tissue and adenomas versus normal tissue was GRASP (p adjusted = 1.59 × 10-5, BF = 12.62, p adjusted = 1.68 × 10-6, BF = 14.53). The highest-rated gene when comparing carcinomas versus adenomas was ATM (p adjusted = 2.0 × 10-4, BF = 10.17). Hierarchical clustering demonstrated poor clustering by the CIMP criteria for methylation. GSEA demonstrated methylation changes in the Netrin-DCC and SLIT-ROBO pathways. Widespread changes in DNA methylation are seen in the transition from adenoma to carcinoma. The finding that GRASP, which encodes the general receptor for phosphoinositide 1-associated scaffold protein, was differentially methylated in colorectal cancer is interesting. This may be a potential biomarker for colorectal cancer. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Wang J, El-Masry N, Talbot I, Tomlinson I, Alison MR, El-Bahrawy M. 2013. Expression Profiling of Proliferation and Apoptotic Markers along the Adenoma-Carcinoma Sequence in Familial Adenomatous Polyposis Patients GASTROENTEROLOGY RESEARCH AND PRACTICE, 2013 pp. 1-7. | Show Abstract | Read more

Introduction. Familial adenomatous polyposis (FAP) patients have a germline mutation in the adenomatous polyposis coli (APC) gene. The APC protein interacts with beta-catenin, resulting in the activation of the Wnt signalling pathway. This results in alterations in cell proliferation and apoptosis. We investigated the expression of beta-catenin and related proliferation and apoptotic factors in FAP patients, exploring the expression along the adenoma-carcinoma sequence. Methods. The expression of beta-catenin, p53, bcl-2, cyclin-D1, caspase-3, CD10, and Ki-67 proteins was studied by immunohistochemistry in samples of colonic nonneoplastic mucosa (n = 71), adenomas (n = 152), and adenocarcinomas (n = 19) from each of the16 FAP patients. Results. The expression of beta-catenin, caspase-3, cyclin-D1, and Ki-67 was increased in both adenomas and carcinomas in FAP patients, compared with normal mucosa. p53 and CD10 expression was only slightly increased in adenomas, but more frequently expressed in carcinomas. Bcl-2 expression was increased in adenomas, but decreased in carcinomas. Conclusion. This is the first study investigating collectively the expression of these molecules together in nonneoplastic mucosa, adenomas, and carcinomas from FAP patients. We find that beta-catenin and related proliferative and apoptotic factors (cyclin-D1, bcl-2, caspase-3, and Ki-67) are expressed early in the sequence, in adenomas. However, p53 and CD10 are often expressed later in the sequence, in carcinomas. © 2013 Jayson Wang et al.

Fernandez-Rozadilla C, Palles C, Carvajal-Carmona L, Peterlongo P, Nici C, Veneroni S, Pinheiro M, Teixeira MR et al. 2013. BMP2/BMP4 colorectal cancer susceptibility loci in northern and southern European populations. Carcinogenesis, 34 (2), pp. 314-318. | Show Abstract | Read more

Genome-wide association studies have successfully identified 20 colorectal cancer susceptibility loci. Amongst these, four of the signals are defined by tagging single nucleotide polymorphisms (SNPs) on regions 14q22.2 (rs4444235 and rs1957636) and 20p12.3 (rs961253 and rs4813802). These markers are located close to two of the genes involved in bone morphogenetic protein (BMP) signaling (BMP4 and BMP2, respectively). By investigating these four SNPs in an initial cohort of Spanish origin, we found substantial evidence that minor allele frequencies (MAFs) may be different in northern and southern European populations. Therefore, we genotyped three additional southern European cohorts comprising a total of 2028 cases and 4273 controls. The meta-analysis results show that only one of the association signals (rs961253) is effectively replicated in the southern European populations, despite adequate power to detect all four. The other three SNPs (rs4444235, rs1957636 and rs4813802) presented discordant results in MAFs and linkage disequilibrium patterns between northern and southern European cohorts. We hypothesize that this lack of replication could be the result of differential tagging of the functional variant in both sets of populations. Were this true, it would have complex consequences in both our ability to understand the nature of the real causative variants, as well as for further study designs.

Delahanty RJ, Xiang YB, Spurdle A, Beeghly-Fadiel A, Long J, Thompson D, Tomlinson I, Yu H et al. 2013. Polymorphisms in inflammation pathway genes and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev, 22 (2), pp. 216-223. | Show Abstract | Read more

BACKGROUND: Experimental and epidemiologic evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. METHODS: To investigate this hypothesis, a two-stage study was carried out to evaluate single-nucleotide polymorphisms (SNP) in inflammatory pathway genes in association with endometrial cancer risk. In stage I, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage I SNPs significantly associated with endometrial cancer (P < 0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage II, which consisted of 10 additional studies including 6,604 endometrial cancer cases and 8,511 controls. RESULTS: Five of the 21 SNPs had significant allelic odds ratios (ORs) and 95% confidence intervals (CI) as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. CONCLUSIONS: These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact statement: This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis.

Cited:

31

Scopus

Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R et al. 2013. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts Gut, 62 (1), pp. 83-93. | Show Abstract | Read more

Objective: Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. Design: The authors generated mice that expressed temporally controlled, stabilised β-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. Results: In the mouse, β-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. Conclusions: There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the cryptvillus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.

Meyer KB, O'Reilly M, Michailidou K, Carlebur S, Edwards SL, French JD, Prathalingham R, Dennis J et al. 2013. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am J Hum Genet, 93 (6), pp. 1046-1060. | Show Abstract | Read more

The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease.

Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL et al. 2013. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet, 45 (2), pp. 136-144. | Show Abstract | Read more

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

Beggs AD, Domingo E, Abulafi M, Hodgson SV, Tomlinson IP. 2013. A study of genomic instability in early preneoplastic colonic lesions. Oncogene, 32 (46), pp. 5333-5337. | Show Abstract | Read more

It is difficult to explain the differential rates of progression of premalignant colonic lesions and differences in behaviour of morphologically similar lesions. Heterogeneity for microsatellite instability (MSI) and promoter methylation in driving these phenomena forward may explain this; however, no previous analysis has examined this in detail at the gland level, the smallest unit of colorectal premalignant lesions. We aimed to carry out an analysis of gland level genomic instability for MSI and promoter methylation. MSI occurred significantly more frequently (20%) in colonic glands than has previously been observed in whole colorectal polyps. Significant promoter methylation was seen in MLH1, PMS2, MLH3 and MSH3 as well as significant heterogeneity for both MSI and promoter methylation. Methylation and MSI may have a significant role in driving forward colorectal carcinogenesis, although in the case of MSI, this association is less clear as it occurs significantly more frequently than previously thought, and may simply be a passenger in the adenoma-carcinoma sequence. Promoter methylation in MLH1, MLH3, MSH3 and PMS2 was also found to be significantly associated with MSI and should be investigated further. A total of 273 colorectal glands (126 hyperplastic, 147 adenomatous) were isolated via laser capture microdissection (targeted at regions of MLH1 loss) from 93 colonic polyps and tested for MSI, and promoter methylation of the DNA mismatch repair genes MLH1, MSH2, MLH3, MSH6, PMS2, MGMT and MLH3 via methylation specific multiplex ligation-dependent probe amplification. Logistic regression modelling was then used to identify significant associations between promoter methylation and gland histological type and MSI status.

Tomlinson I, Jaeger E, Leedham S, Thomas H. 2013. Reply to "The classification of intestinal polyposis". Nat Genet, 45 (1), pp. 2-3. | Read more

Lewis A, Tomlinson I. 2012. Cancer. The utility of mouse models in post-GWAS research. Science, 338 (6112), pp. 1301-1302. | Read more

Domingo E, Ramamoorthy R, Oukrif D, Rosmarin D, Presz M, Wang H, Pulker H, Lockstone H et al. 2013. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J Pathol, 229 (3), pp. 441-448. | Show Abstract | Read more

Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53-CIN-MSI-BRAF-KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI(+) and/or BRAF-mutant; (2) CIN(+) and/or TP53(-) mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN(+) , TP53-wild-type; (4) KRAS(-) and/or PIK3CA-mutant, CIN(-) , TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN(+) CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN(+) cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival.

Beggs AD, Domingo E, McGregor M, Presz M, Johnstone E, Midgley R, Kerr D, Oukrif D et al. 2012. Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN. Oncotarget, 3 (11), pp. 1348-1355. | Show Abstract | Read more

Repair of double strand DNA breaks (DSBs) is pivotal in maintaining normal cell division and disruption of this system has been shown to be a key factor in carcinogenesis. Loss of expression of the DSB repair proteins have previously been shown to be associated with poorer survival in colorectal cancer. We wished to ascertain the relationship of altered expression of the DSB repair proteins γ-H2AX (gamma-H2AX), ATM and Ku70 with biological and clinico-pathological features of colorectal cancer. 908 tumours from the VICTOR clinical trial of stage II/III colorectal cancer were analysed for expression of γ-H2AX, ATM and Ku70 using immunohistochemistry. Expression levels were correlated with CIN and with disease-free survival, correcting for microsatellite instability, BRAF/KRAS mutation status, Dukes stage, chemo/radiotherapy, age, gender and tumour location. Down-regulated Ku70 expression was associated with chromosomal instability (p=0.029) in colorectal cancer. Reduced ATM expression was an independent marker of poor disease-free survival (HR=1.67, 95% CI 1.11-2.50, p=0.015). For Ku70, further studies are required to investigate the potential relationship of non-homologous end joining with chromosomal instability. Loss of ATM expression might serve as a biomarker of poor prognosis in colorectal cancer.

Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV, Tomlinson IP. 2013. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol, 229 (5), pp. 697-704. | Show Abstract | Read more

Changes in DNA methylation, whether hypo- or hypermethylation, have been shown to be associated with the progression of colorectal cancer. Methylation changes substantially in the progression from normal mucosa to adenoma and to carcinoma. This phenomenon has not been studied extensively and studies have been restricted to individual CpG islands, rather than taking a whole-genome approach. We aimed to study genome-wide methylation changes in colorectal cancer. We obtained 10 fresh-frozen normal tissue-cancer sample pairs, and five fresh-frozen adenoma samples. These were run on the lllumina HumanMethylation27 whole-genome methylation analysis system. Differential methylation between normal tissue, adenoma and carcinoma was analysed using Bayesian regression modelling, gene set enrichment analysis (GSEA) and hierarchical clustering (HC). The highest-rated individual gene for differential methylation in carcinomas versus normal tissue and adenomas versus normal tissue was GRASP (padjusted  = 1.59 × 10(-5) , BF = 12.62, padjusted  = 1.68 × 10(-6) , BF = 14.53). The highest-rated gene when comparing carcinomas versus adenomas was ATM (padjusted  = 2.0 × 10(-4) , BF = 10.17). Hierarchical clustering demonstrated poor clustering by the CIMP criteria for methylation. GSEA demonstrated methylation changes in the Netrin-DCC and SLIT-ROBO pathways. Widespread changes in DNA methylation are seen in the transition from adenoma to carcinoma. The finding that GRASP, which encodes the general receptor for phosphoinositide 1-associated scaffold protein, was differentially methylated in colorectal cancer is interesting. This may be a potential biomarker for colorectal cancer.

Warren H, Dudbridge F, Fletcher O, Orr N, Johnson N, Hopper JL, Apicella C, Southey MC et al. 2012. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer: evidence from the Breast Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev, 21 (10), pp. 1783-1791. | Show Abstract | Read more

BACKGROUND: Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686). METHODS: To further investigate the rs865686-breast cancer association, we conducted a replication study within the Breast Cancer Association Consortium, which comprises 37 case-control studies (48,394 cases, 50,836 controls). RESULTS: This replication study provides additional strong evidence of an inverse association between rs865686 and breast cancer risk [study-adjusted per G-allele OR, 0.90; 95% confidence interval (CI), 0.88; 0.91, P = 2.01 × 10(-29)] among women of European ancestry. There were ethnic differences in the estimated minor (G)-allele frequency among controls [0.09, 0.30, and 0.38 among, respectively, Asians, Eastern Europeans, and other Europeans; P for heterogeneity (P(het)) = 1.3 × 10(-143)], but no evidence of ethnic differences in per allele OR (P(het) = 0.43). rs865686 was associated with estrogen receptor-positive (ER(+)) disease (per G-allele OR, 0.89; 95% CI, 0.86-0.91; P = 3.13 × 10(-22)) but less strongly, if at all, with ER-negative (ER(-)) disease (OR, 0.98; 95% CI, 0.94-1.02; P = 0.26; P(het) = 1.16 × 10(-6)), with no evidence of independent heterogeneity by progesterone receptor or HER2 status. The strength of the breast cancer association decreased with increasing age at diagnosis, with case-only analysis showing a trend in the number of copies of the G allele with increasing age at diagnosis (P for linear trend = 0.0095), but only among women with ER(+) tumors. CONCLUSIONS: This study is the first to show that rs865686 is a susceptibility marker for ER(+) breast cancer. IMPACT: The findings further support the view that genetic susceptibility varies according to tumor subtype.

Carvajal-Carmona LG, Zauber AG, Jones AM, Howarth K, Wang J, Cheng T, APC Trial Collaborators, APPROVe Trial Collaborators et al. 2013. Much of the genetic risk of colorectal cancer is likely to be mediated through susceptibility to adenomas. Gastroenterology, 144 (1), pp. 53-55. | Show Abstract | Read more

Several single-nucleotide polymorphisms (SNPs) have been associated with colorectal cancer (CRC) susceptibility. Most CRCs arise from adenomas, and SNPs therefore might affect predisposition to CRC by increasing adenoma risk. We found that 8 of 18 known CRC-associated SNPs (rs10936599, rs6983267, rs10795668, rs3802842, rs4444235, rs1957636, rs4939827, and rs961253) were over-represented in CRC-free patients with adenomas, compared with controls. Ten other CRC-associated SNPs (rs6691170, rs6687758, rs16892766, rs7136702, rs11169552, rs4779584, rs9929218, rs10411210, rs4813802, and rs4925386) were not associated significantly with adenoma risk. Genetic susceptibility to CRC in the general population is likely to be mediated in part by predisposition to adenomas.

Su Z, Gay LJ, Strange A, Palles C, Band G, Whiteman DC, Lescai F, Langford C et al. 2012. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nat Genet, 44 (10), pp. 1131-1136. | Show Abstract | Read more

Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.

Jaeger E, Leedham S, Lewis A, Segditsas S, Becker M, Cuadrado PR, Davis H, Kaur K et al. 2012. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet, 44 (6), pp. 699-703. | Show Abstract | Read more

Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.

Bardella C, Olivero M, Lorenzato A, Geuna M, Adam J, O'Flaherty L, Rustin P, Tomlinson I, Pollard PJ, Di Renzo MF. 2012. Cells lacking the fumarase tumor suppressor are protected from apoptosis through a hypoxia-inducible factor-independent, AMPK-dependent mechanism. Mol Cell Biol, 32 (15), pp. 3081-3094. | Show Abstract | Read more

Loss-of-function mutations of the tumor suppressor gene encoding fumarase (FH) occur in individuals with hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC). We found that loss of FH activity conferred protection from apoptosis in normal human renal cells and fibroblasts. In FH-defective cells, both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α accumulated, but they were not required for apoptosis protection. Conversely, AMP-activated protein kinase (AMPK) was activated and required, as evidenced by the finding that FH inactivation failed to protect AMPK-null mouse embryo fibroblasts (MEFs) and AMPK-depleted human renal cells. Activated AMPK was detected in renal cysts, which occur in mice with kidney-targeted deletion of Fh1 and in kidney cancers of HLRCC patients. In Fh1-null MEFs, AMPK activation was sustained by fumarate accumulation and not by defective energy metabolism. Addition of fumarate and succinate to kidney cells led to extracellular signal-regulated kinase 1/2 (ERK1/2) and AMPK activation, probably through a receptor-mediated mechanism. These findings reveal a new mechanism of tumorigenesis due to FH loss and an unexpected pro-oncogenic role for AMPK that is important in considering AMPK reactivation as a therapeutic strategy against cancer.

Leedham S, Tomlinson I. 2012. The continuum model of selection in human tumors: general paradigm or niche product? Cancer Res, 72 (13), pp. 3131-3134. | Show Abstract | Read more

Berger and colleagues recently proposed a continuum model of how somatic mutations cause tumors to grow, thus supplementing the established binary models, such as oncogene activation and "two hits" at tumor suppressor loci. In the basic continuum model, decreases or increases in gene function, short of full inactivation or activation, impact linearly on cancer development. An extension, called the fail-safe model, envisaged an optimum level of gene derangement for tumor growth, but proposed that the cell gained protection from tumorigenesis because additional mutations caused excessive derangement. Most of the evidence in support of the continuum model came from Pten mutant mice rather than humans. In this article, we assess the validity and applicability of the continuum and fail-safe models. We suggest that the latter is of limited use: In part, it restates the existing "just right" of optimum intermediate gene derangement in tumorigenesis, and in part it is inherently implausible that a cell should avoid becoming cancerous only when it is some way down the road to that state. In contrast, the basic continuum model is a very useful addition to the other genetic models of tumorigenesis, especially in certain scenarios. Fittingly for a quantitative model, we propose that the continuum model is most likely to apply where multiple, cancer-promoting mutations have relatively small, additive effects, either through the well-established case of additive germline predisposition alleles or in a largely hypothetical situation where cancers may have acquired several somatic "mini-driver" mutations, each with weaker effects than classical tumor suppressors or fully activated oncogenes.

Long J, Zheng W, Xiang YB, Lose F, Thompson D, Tomlinson I, Yu H, Wentzensen N et al. 2012. Genome-wide association study identifies a possible susceptibility locus for endometrial cancer. Cancer Epidemiol Biomarkers Prev, 21 (6), pp. 980-987. | Show Abstract | Read more

BACKGROUND: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. METHODS: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). RESULTS: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03-1.16] for the A/G genotype and 1.17 (95% CI, 1.05-1.30) for the G/G genotype (P = 1.6 × 10(-4) in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04-1.18) and 1.21 (1.08-1.35), respectively (P = 2.4 × 10(-5)). CONCLUSIONS: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. IMPACT: This study identified a potential genetic locus for endometrial cancer risk.

Johnson N, Walker K, Gibson LJ, Orr N, Folkerd E, Haynes B, Palles C, Coupland B et al. 2012. CYP3A variation, premenopausal estrone levels, and breast cancer risk. J Natl Cancer Inst, 104 (9), pp. 657-669. | Show Abstract | Read more

BACKGROUND: Epidemiological studies have provided strong evidence for a role of endogenous sex steroids in the etiology of breast cancer. Our aim was to identify common variants in genes involved in sex steroid synthesis or metabolism that are associated with hormone levels and the risk of breast cancer in premenopausal women. METHODS: We measured urinary levels of estrone glucuronide (E1G) using a protocol specifically developed to account for cyclic variation in hormone levels during the menstrual cycle in 729 healthy premenopausal women. We genotyped 642 single-nucleotide polymorphisms (SNPs) in these women; a single SNP, rs10273424, was further tested for association with the risk of breast cancer using data from 10 551 breast cancer case patients and 17 535 control subjects. All statistical tests were two-sided. RESULTS: rs10273424, which maps approximately 50 kb centromeric to the cytochrome P450 3A (CYP3A) gene cluster at chromosome 7q22.1, was associated with a 21.8% reduction in E1G levels (95% confidence interval [CI] = 27.8% to 15.3% reduction; P = 2.7 × 10(-9)) and a modest reduction in the risk of breast cancer in case patients who were diagnosed at or before age 50 years (odds ratio [OR] = 0.91, 95% CI = 0.83 to 0.99; P = .03) but not in those diagnosed after age 50 years (OR = 1.01, 95% CI = 0.93 to 1.10; P = .82). CONCLUSIONS: Genetic variation in noncoding sequences flanking the CYP3A locus contributes to variance in premenopausal E1G levels and is associated with the risk of breast cancer in younger patients. This association may have wider implications given that the most predominantly expressed CYP3A gene, CYP3A4, is responsible for metabolism of endogenous and exogenous hormones and hormonal agents used in the treatment of breast cancer.

Stevens KN, Fredericksen Z, Vachon CM, Wang X, Margolin S, Lindblom A, Nevanlinna H, Greco D et al. 2012. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res, 72 (7), pp. 1795-1803. | Show Abstract | Read more

The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05-1.15; P = 3.49 × 10(-5)] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13-1.31; P = 2.22 × 10(-7)). However, rs8170 was no longer associated with ER-negative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89-1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18-1.33; P = 3.31 × 10(-13)]. Thus, 19p13.1 is the first triple-negative-specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways.

Schödel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, Tomlinson IP, Ratcliffe PJ, Mole DR. 2012. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat Genet, 44 (4), pp. 420-S2. | Show Abstract | Read more

Although genome-wide association studies (GWAS) have identified the existence of numerous population-based cancer susceptibility loci, mechanistic insights remain limited, particularly for intergenic polymorphisms. Here, we show that polymorphism at a remote intergenic region on chromosome 11q13.3, recently identified as a susceptibility locus for renal cell carcinoma, modulates the binding and function of hypoxia-inducible factor (HIF) at a previously unrecognized transcriptional enhancer of CCND1 (encoding cyclin D1) that is specific for renal cancers characterized by inactivation of the von Hippel-Lindau tumor suppressor (pVHL). The protective haplotype impairs binding of HIF-2, resulting in an allelic imbalance in cyclin D1 expression, thus affecting a link between hypoxia pathways and cell cycle control.

Tomlinson IP, Houlston RS, Montgomery GW, Sieber OM, Dunlop MG. 2012. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis, 27 (2), pp. 219-223. | Show Abstract | Read more

Despite their prime candidate status, polymorphisms near genes involved in DNA repair or in other functions related to genome stability have been conspicuously under-represented in the significant associations reported from genome-wide association studies (GWAS) of cancer susceptibility. In this study, we assessed a set of single-nucleotide polymorphisms (SNPs) near 157 DNA repair genes in three colorectal cancer (CRC) GWAS. Although no individual SNP showed evidence of association, the set of SNPs as a whole was associated with colorectal cancer risk. When candidate SNPs were examined, our data did not support most of the previously reported associations with CRC susceptibility, an exception being an effect of the MLH1 promoter SNP -93G>A (rs1800734). Rare variants in CHEK2 (I157T and possibly del1100C) also appear to be associated with CRC risk. Overall, the absence to date of disease-associated DNA repair SNPs in cancer GWAS may be explained by a combination of the following: (i) many loci with individually very small effects on risk; (ii) rare alleles of moderate effect and (iii) subgroups of CRC, such as those with microsatellite instability, associated with specific variants. It will be particularly intriguing to determine whether any GWAS across cancer types identify DNA variants that predispose to cancers of more than one site.

Tomlinson I. 2012. Colorectal cancer genetics: from candidate genes to GWAS and back again. Mutagenesis, 27 (2), pp. 141-142. | Read more

Spain SL, Carvajal-Carmona LG, Howarth KM, Jones AM, Su Z, Cazier JB, Williams J, Aaltonen LA et al. 2012. Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13. Hum Mol Genet, 21 (4), pp. 934-946. | Show Abstract | Read more

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.

Davis H, Tomlinson I. 2012. CDC4/FBXW7 and the 'just enough' model of tumourigenesis. J Pathol, 227 (2), pp. 131-135. | Show Abstract | Read more

There is good evidence to show that cancer-causing mutations are not always simple gain- and loss-of-function changes. One example is the APC gene, where the combination of mutations produces a 'just-right' level of Wnt signalling. A recent article by Berger and colleagues posited a 'continuum model' in which increasing or decreasing gene expression of function was linearly associated with tumourigenesis. Berger also proposed an 'obligate haploinsufficiency' or 'fail-safe' model, whereby heterozygous mutations produce sufficient derangement for tumourigenesis, yet homozygous mutations are cell-lethal or senescence-causing. One gene highlighted by Berger and colleagues as an example of a gene following a 'continuum' or 'fail-safe' model was FBXW7/CDC4, a gene mutated in several different types of malignancy. We have analysed the COSMIC FBXW7 data. FBXW7 does not obviously follow a 'continuum' or 'fail-safe' model and the most common mutant genotypes are mono-allelic missense changes that affect critical arginine residues involved in interactions with substrates. There is no strong selection for complete loss of FBXW7 protein function, but bi-allelic inactivating mutations do occur. For FBXW7, we suggest a variant of 'just right' which we call 'just enough'. For FBXW7 mutations that occur away from the propellor tips, the heterozygote may have some effect on tumourigenesis, but there is selective pressure for a 'second hit'. For propellor tip mutations, by contrast, there is weak pressure for a 'second hit' because they usually provide sufficient functional derangement on their own.

Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R et al. 2013. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut, 62 (1), pp. 83-93. | Show Abstract | Read more

OBJECTIVE: Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN: The authors generated mice that expressed temporally controlled, stabilised β-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS: In the mouse, β-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS: There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.

Jones AM, Howarth KM, Martin L, Gorman M, Mihai R, Moss L, Auton A, Lemon C et al. 2012. Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24. J Med Genet, 49 (3), pp. 158-163. | Show Abstract | Read more

Five single nucleotide polymorphisms (SNPs) associated with thyroid cancer (TC) risk have been reported: rs2910164 (5q24); rs6983267 (8q24); rs965513 and rs1867277 (9q22); and rs944289 (14q13). Most of these associations have not been replicated in independent populations and the combined effects of the SNPs on risk have not been examined. This study genotyped the five TC SNPs in 781 patients recruited through the TCUKIN study. Genotype data from 6122 controls were obtained from the CORGI and Wellcome Trust Case-Control Consortium studies. Significant associations were detected between TC and rs965513A (p=6.35×10(-34)), rs1867277A (p=5.90×10(-24)), rs944289T (p=6.95×10(-7)), and rs6983267G (p=0.016). rs6983267 was most strongly associated under a recessive model (P(GG vs GT + TT)=0.004), in contrast to the association of this SNP with other cancer types. However, no evidence was found of an association between rs2910164 and disease under any risk model (p>0.7). The rs1867277 association remained significant (p=0.008) after accounting for genotypes at the nearby rs965513 (p=2.3×10(-13)) and these SNPs did not tag a single high risk haplotype. The four validated TC SNPs accounted for a relatively large proportion (∼11%) of the sibling relative risk of TC, principally owing to the large effect size of rs965513 (OR 1.74).

Lewis A, Tomlinson I. 2012. The utility of mouse models in post-GWAS research Science, 338 (6112), pp. 1301-1302. | Show Abstract | Read more

Functional validation of a noncoding genetic variant linked to cancer risk is encouraging for genome-wide association studies.

Davies JL, Cazier JB, Dunlop MG, Houlston RS, Tomlinson IP, Holmes CC. 2012. A novel test for gene-ancestry interactions in genome-wide association data. PLoS One, 7 (12), pp. e48687. | Show Abstract | Read more

Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into "ancestry groups" and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions.

Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L et al. 2013. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene, 32 (39), pp. 4675-4682. | Show Abstract | Read more

Biallelic protein-truncating mutations in the adenomatous polyposis coli (APC) gene are prevalent in sporadic colorectal cancer (CRC). Mutations may not be fully inactivating, instead producing WNT/β-catenin signalling levels 'just-right' for tumourigenesis. However, the spectrum of optimal APC genotypes accounting for both hits, and the influence of clinicopathological features on genotype selection remain undefined. We analysed 630 sporadic CRCs for APC mutations and loss of heterozygosity (LOH) using sequencing and single-nucleotide polymorphism microarrays, respectively. Truncating APC mutations and/or LOH were detected in 75% of CRCs. Most truncating mutations occurred within a mutation cluster region (MCR; codons 1282-1581) leaving 1-3 intact 20 amino-acid repeats (20AARs) and abolishing all Ser-Ala-Met-Pro (SAMP) repeats. Cancers commonly had one MCR mutation plus either LOH or another mutation 5' to the MCR. LOH was associated with mutations leaving 1 intact 20AAR. MCR mutations leaving 1 vs 2-3 intact 20AARs were associated with 5' mutations disrupting or leaving intact the armadillo-repeat domain, respectively. Cancers with three hits had an over-representation of mutations upstream of codon 184, in the alternatively spliced region of exon 9, and 3' to the MCR. Microsatellite unstable cancers showed hyper-mutation at MCR mono- and di-nucleotide repeats, leaving 2-3 intact 20AARs. Proximal and distal cancers exhibited different preferred APC genotypes, leaving a total of 2 or 3 and 0 to 2 intact 20AARs, respectively. In conclusion, APC genotypes in sporadic CRCs demonstrate 'fine-tuned' interdependence of hits by type and location, consistent with selection for particular residual levels of WNT/β-catenin signalling, with different 'optimal' thresholds for proximal and distal cancers.

Enciso-Mora V, Hosking FJ, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JAE, Tomlinson IPM et al. 2012. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia Leukemia, 26 (10), pp. 2212-2215. | Show Abstract | Read more

Recent genome-wide association studies (GWAS) have provided the first unambiguous evidence that common genetic variation influences the risk of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), identifying risk single-nucleotide polymorphisms (SNPs) localizing to 7p12.2, 9p21.3, 10q21.2 and 14q11.2. The testing of SNPs individually for an association in GWA studies necessitates the imposition of a very stringent P-value to address the issue of multiple testing. While this reduces false positives, real associations may be missed and therefore any estimate of the total heritability will be negatively biased. Using GWAS data on 823 BCP-ALL cases by considering all typed SNPs simultaneously, we have calculated that 24% of the total variation in BCP-ALL risk is accounted for common genetic variation (95% confidence interval 6-42%). Our findings provide support for a polygenic basis for susceptibility to BCP-ALL and have wider implications for future searches for novel disease-causing risk variants. © 2012 Macmillan Publishers Limited.

Wang J, Hollingshead J, El-Masry N, Horncastle D, Talbot I, Tomlinson I, Alison MR, El-Bahrawy M. 2012. Expression of EGFR, HER2, phosphorylated ERK and phosphorylated MEK in colonic neoplasms of familial adenomatous polyposis patients. J Gastrointest Cancer, 43 (3), pp. 444-455. | Show Abstract | Read more

PURPOSE: The expression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) is associated with poor prognosis in sporadic colorectal carcinoma (CRC). EGFR inhibitors are approved for the treatment of refractory CRC. The aim of this study was to investigate the expression of EGFR and HER2 and downstream extracellular signal regulated kinase (ERK) and mitogen activated protein kinase (MAPK) in non-neoplastic colonic mucosa, adenomas and carcinomas from familial adenomatous polyposis coli (FAP) patients, exploring the expression along the adenoma-carcinoma sequence. METHODS: The expression of EGFR, HER2, phosphorylated MAPK/ERK kinase (pMEK) and phosphorylated ERK (pERK) proteins was studied by immunohistochemistry in samples of colonic non-neoplastic mucosa (n = 65), adenomas (n = 149) and adenocarcinomas (n = 16) from each of the 16 FAP patients. RESULTS: For HER2, only weak cytoplasmic expression was seen in 8% of adenomas, 6% of carcinomas and 3% of the non-neoplastic mucosa. EGFR was expressed in non-neoplastic mucosa, adenomas and carcinomas with a statistically significant increase in expression in adenomas compared with non-neoplastic mucosa (p < 0.001). There was also a statistically significant increase in nuclear staining intensity for pERK (p < 0.001) and pMEK (p < 0.001) in adenomas compared to non-neoplastic mucosa. CONCLUSIONS: This is the first study investigating the expression of these receptors in non-neoplastic mucosa, adenomas and carcinomas from FAP patients. HER2 is not upregulated in the tumours of FAP patients, while EGFR appears to be upregulated in most adenomas and carcinomas, with associated upregulation of pERK and pMEK. We conclude that EGFR and downstream members of its signalling pathway, but not HER2, may be potential therapeutic targets in FAP patients.

Cited:

23

Scopus

Kinnersley B, Migliorini G, Broderick P, Whiffin N, Dobbins SE, Casey G, Hopper J, Sieber O et al. 2012. The TERT variant rs2736100 is associated with colorectal cancer risk British Journal of Cancer, 107 (6), pp. 1001-1008. | Show Abstract | Read more

Background: Polymorphic variation at the 5p15.33 (TERT-CLPTM1L) locus is associated with the risk of many cancers but a relationship with colorectal cancer (CRC) risk has yet to be defined.Methods:We used data from six genome-wide association studies (GWAS) of CRC, linkage disequilibrium mapping and imputation, to examine the relationship between 73 single-nucleotide polymorphisms at 5p15.33 and CRC risk in detail.Results:rs2736100, which localises to intron 2 of TERT, provided the strongest evidence of an association with CRC (P 2.28 × 10 -4). The association was also shown in an independent series of 10 047 CRC cases and 6918 controls (P0.02). A meta-analysis of all seven studies (totalling 16 039 cases, 16 430 controls) provided increased evidence of association (P2.49 × 10 5; per allele odds ratio1.07). The association of rs2736100 on CRC risk was shown to be independent of 15 low-penetrance variants previously identified.Conclusion:The rs2736100 association demonstrates an influence of variation at 5p15.33 on CRC risk and further evidence that the 5p15.33 (TERT-CLPTM1L) locus has pleiotropic effects (reflecting generic or lineage-specific effects) on cancer risk. © 2012 Cancer Research UK All rights reserved.

Hein R, Maranian M, Hopper JL, Kapuscinski MK, Southey MC, Park DJ, Schmidt MK, Broeks A et al. 2012. Comparison of 6q25 breast cancer hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS One, 7 (8), pp. e42380. | Show Abstract | Read more

The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER-) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26-1.48), p = 7.6 × 10(-14) in Asians and 1.09 (95% CI 1.07-1.11), p = 6.8 × 10(-18) in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19-1.41), p = 1.2 × 10(-9) in Asians and 1.12 (95% CI 1.08-1.17), p = 3.8 × 10(-9) in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER- than ER+ tumours in Europeans [OR (ER-) = 1.20 (95% CI 1.15-1.25), p = 1.8 × 10(-17) versus OR (ER+) = 1.07 (95% CI 1.04-1.1), p = 1.3 × 10(-7), p(heterogeneity) = 5.1 × 10(-6)]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER- tumours.

Spain SL, Carvajal-carmona LG, Howarth KM, Jones AM, Su Z, Cazier JB, Williams J, Aaltonen LA et al. 2012. Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13 Human Molecular Genetics, 21 (4), pp. 934-946. | Show Abstract | Read more

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases. © The Author 2011. Published by Oxford University Press. All rights reserved.

Cited:

109

Scopus

Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, Tenesa A, Spain S et al. 2012. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk Nature Genetics, 44 (7), pp. 770-776. | Show Abstract | Read more

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10 -10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10 -10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10 -10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC. © 2012 Nature America, Inc. All rights reserved.

Cited:

123

Scopus

Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, Dennis J, Wang Q et al. 2012. Genome-wide association analysis identifies three new breast cancer susceptibility loci Nature Genetics, 44 (3), pp. 312-318. | Show Abstract | Read more

Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for g1/48% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in g1/470,000 cases and ĝ̂1/468,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 - 10 g 35), 12q24 (rs1292011; P = 4.3 - 10 g 19) and 21q21 (rs2823093; P = 1.1 - 10 g 12). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth. © 2012 Nature America, Inc. All rights reserved.

Cited:

51

Scopus

Schödel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, Tomlinson IP, Ratcliffe PJ, Mole DR. 2012. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression Nature Genetics, 44 (4), pp. 420-425. | Show Abstract | Read more

Although genome-wide association studies (GWAS) have identified the existence of numerous population-based cancer susceptibility loci, mechanistic insights remain limited, particularly for intergenic polymorphisms. Here, we show that polymorphism at a remote intergenic region on chromosome 11q13.3, recently identified as a susceptibility locus for renal cell carcinoma, modulates the binding and function of hypoxia-inducible factor (HIF) at a previously unrecognized transcriptional enhancer of CCND1 (encoding cyclin D1) that is specific for renal cancers characterized by inactivation of the von Hippelg-Lindau tumor suppressor (pVHL). The protective haplotype impairs binding of HIF-2, resulting in an allelic imbalance in cyclin D1 expression, thus affecting a link between hypoxia pathways and cell cycle control. © 2012 Nature America, Inc. All rights reserved.

Cited:

22

Scopus

Lambrechts D, Truong T, Justenhoven C, Humphreys MK, Wang J, Hopper JL, Dite GS, Apicella C et al. 2012. 11q13 is a susceptibility locus for hormone receptor positive breast cancer Human Mutation, 33 (7), pp. 1123-1132. | Show Abstract | Read more

A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10, and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we genotyped the variants rs2380205, rs1011970, rs704010, rs614367, and rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P ≤ 3 × 10 -9) and weak evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10 -39). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR)-positive breast cancer, whereas the associations for the other three loci did not differ by tumor subtype. © 2012 Wiley Periodicals, Inc.

Cited:

64

Scopus

Jaeger E, Leedham S, Lewis A, Segditsas S, Becker M, Cuadrado PR, Davis H, Kaur K et al. 2012. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1 Nature Genetics, 44 (6), pp. 699-703. | Show Abstract | Read more

Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3′ end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel. © 2012 Nature America, Inc. All rights reserved.

Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, Tenesa A, Spain S et al. 2012. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet, 44 (7), pp. 770-776. | Show Abstract | Read more

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10(-10)), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10(-10)) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10(-10)) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.

Davis H, Tomlinson I. 2012. CDC4/FBXW7 and the 'just enough' model of tumourigenesis Journal of Pathology, 227 (2), pp. 131-135. | Show Abstract | Read more

There is good evidence to show that cancer-causing mutations are not always simple gain- and loss-of-function changes. One example is the APC gene, where the combination of mutations produces a 'just-right' level of Wnt signalling. A recent article by Berger and colleagues posited a 'continuum model' in which increasing or decreasing gene expression of function was linearly associated with tumourigenesis. Berger also proposed an 'obligate haploinsufficiency' or 'fail-safe' model, whereby heterozygous mutations produce sufficient derangement for tumourigenesis, yet homozygous mutations are cell-lethal or senescence-causing. One gene highlighted by Berger and colleagues as an example of a gene following a 'continuum' or 'fail-safe' model was FBXW7/CDC4, a gene mutated in several different types of malignancy. We have analysed the COSMIC FBXW7 data. FBXW7 does not obviously follow a 'continuum' or 'fail-safe' model and the most common mutant genotypes are mono-allelic missense changes that affect critical arginine residues involved in interactions with substrates. There is no strong selection for complete loss of FBXW7 protein function, but bi-allelic inactivating mutations do occur. For FBXW7, we suggest a variant of 'just right' which we call 'just enough'. For FBXW7 mutations that occur away from the propellor tips, the heterozygote may have some effect on tumourigenesis, but there is selective pressure for a 'second hit'. For propellor tip mutations, by contrast, there is weak pressure for a 'second hit' because they usually provide sufficient functional derangement on their own. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Cited:

40

Scopus

Jones AM, Howarth KM, Martin L, Gorman M, Mihai R, Moss L, Auton A, Lemon C et al. 2012. Thyroid cancer susceptibility polymorphisms: Confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24 Journal of Medical Genetics, 49 (3), pp. 158-163. | Show Abstract | Read more

Five single nucleotide polymorphisms (SNPs) associated with thyroid cancer (TC) risk have been reported: rs2910164 (5q24); rs6983267 (8q24); rs965513 and rs1867277 (9q22); and rs944289 (14q13). Most of these associations have not been replicated in independent populations and the combined effects of the SNPs on risk have not been examined. This study genotyped the five TC SNPs in 781 patients recruited through the TCUKIN study. Genotype data from 6122 controls were obtained from the CORGI and Wellcome Trust Case-Control Consortium studies. Significant associations were detected between TC and rs965513A (p=6.35×10 -34), rs1867277A (p=5.90×10 -24), rs944289T (p=6.95×10 -7), and rs6983267G (p=0.016). rs6983267 was most strongly associated under a recessive model (P GG vs GT + TT=0.004), in contrast to the association of this SNP with other cancer types. However, no evidence was found of an association between rs2910164 and disease under any risk model (p>0.7). The rs1867277 association remained significant (p=0.008) after accounting for genotypes at the nearby rs965513 (p=2.3×10 -13) and these SNPs did not tag a single high risk haplotype. The four validated TC SNPs accounted for a relatively large proportion (~11%) of the sibling relative risk of TC, principally owing to the large effect size of rs965513 (OR 1.74).

Lambrechts D, Truong T, Justenhoven C, Humphreys MK, Wang J, Hopper JL, Dite GS, Apicella C et al. 2012. 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Hum Mutat, 33 (7), pp. 1123-1132. | Show Abstract | Read more

A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10, and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we genotyped the variants rs2380205, rs1011970, rs704010, rs614367, and rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P ≤ 3 × 10(-9) ) and weak evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10(-39) ). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR)-positive breast cancer, whereas the associations for the other three loci did not differ by tumor subtype.

Enciso-Mora V, Hosking FJ, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, Tomlinson IP et al. 2012. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia, 26 (10), pp. 2212-2215. | Show Abstract | Read more

Recent genome-wide association studies (GWAS) have provided the first unambiguous evidence that common genetic variation influences the risk of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), identifying risk single-nucleotide polymorphisms (SNPs) localizing to 7p12.2, 9p21.3, 10q21.2 and 14q11.2. The testing of SNPs individually for an association in GWA studies necessitates the imposition of a very stringent P-value to address the issue of multiple testing. While this reduces false positives, real associations may be missed and therefore any estimate of the total heritability will be negatively biased. Using GWAS data on 823 BCP-ALL cases by considering all typed SNPs simultaneously, we have calculated that 24% of the total variation in BCP-ALL risk is accounted for common genetic variation (95% confidence interval 6-42%). Our findings provide support for a polygenic basis for susceptibility to BCP-ALL and have wider implications for future searches for novel disease-causing risk variants.

Schödel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, Tomlinson IP, Ratcliffe PJ, Mole DR. 2012. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression Nature Genetics, 44 (4), pp. 420-425.

Dunlop MG, Tenesa A, Farrington SM, Ballereau S, Brewster DH, Koessler T, Pharoah P, Schafmayer C et al. 2013. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42,103 individuals. Gut, 62 (6), pp. 871-881. | Show Abstract | Read more

OBJECTIVE: Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. DESIGN: Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39,266) and in combination with gender, age and FH (n=11,324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. RESULTS: The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2 × 10(-16)), confirmed in external validation sets (Sweden p=1.2 × 10(-6), Finland p=2 × 10(-5)). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. CONCLUSION: Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.

Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, Dennis J, Wang Q et al. 2012. Genome-wide association analysis identifies three new breast cancer susceptibility loci Nature Genetics, 44 (3), pp. 312-318.

Fernandez-Rozadilla C, Cazier JB, Moreno V, Crous-Bou M, Guinó E, Durán G, Lamas MJ, López R<