register interest

Professor Lucy Dorrell

Research Area: Immunology
Technology Exchange: Cell sorting, Cellular immunology, Flow cytometry, Microscopy (Confocal) and Vaccine production and evaluation
Scientific Themes: Immunology & Infectious Disease
Keywords: hiv, t cell, vaccine, clinical trial, viral vector and antiretroviral
Web Links:
Visualisation of interaction between HIV-infected CD4+ T cells (blue - CD4, green - p24 Ag) and CD8+ T cells (magenta - CD8) in the presence of an engineered HIV-specific T cell receptor (ImmTAV) using imaging flow cytometry.

Visualisation of interaction between HIV-infected CD4+ T cells (blue - CD4, green - p24 Ag) and CD8+ ...

The goal of our research is to understand the mechanisms that determine successful containment of HIV and how these can be exploited in the development of vaccines and T cell-based therapies. Our work encompasses studies at the single cell level, patient cohorts and clinical trials.

We are currently focusing on the following areas of investigation:

New approaches to reducing HIV reservoirs

Natural immune responses keep HIV under control to some degree in most people but are unable to prevent disease progression. ART stops viral replication but is not able to eliminate cells that harbour dormant (the latent reservoir) HIV. New approaches are needed to eliminate this viral reservoir. We are testing ART in combination with vaccines and other agents in clinical trials. The vaccines comprise a conserved region immunogen, HIVconsv, delivered by replication-defective chimpanzee adenovirus and MVA vectors. These trials are among the first to evaluate latent HIV reservoirs before and after vaccination. In addition, in collaboration with Immunocore Ltd, Oxon, we are investigating the potency of novel engineered immune-mobilising T cell receptors-based drugs (‘ImmTAVs’) that are designed to clear HIV-infected cells.

Immunological correlates of HIV control

We demonstrated that ex vivo CD8+ T cell viral inhibitory activity measured in HIV-positive patients is correlated with viral load set-point and is predictive of the rate of HIV disease progression. A critical next step in the development of preventive and therapeutic vaccines is to define the components of an HIV immunogen that could induce CD8+ T cells with broad and potent inhibitory capacity. Through collaboration with the NIAID-funded HIV Vaccine Trials Network and Duke University NC, we have shown that targeting of selected vulnerable regions within the HIV proteome by CD8+ T cells is strongly associated with their capacity to inhibit HIV replication in vitro.

This work has paved the way for new imaging studies of HIV-immune cell interactions using the first ever containment level 3 high-resolution microscopy facility at the Weatherall Institute of Molecular Medicine.

Prevention of co-infections

As HIV-positive people are living longer, prevention of comorbidities has become a priority. PEACHI is an EU FP7-funded project to develop vaccines for prevention of hepatitis C and HIV co-infections. The PEACHI consortium brings together expertise in the HIV and HCV fields, with European partners from academia (Oxford, St. James Hospital Dublin, Kantosspital St Gallen) and industry (GSK and Okairos) ( We are planning a series of vaccine trials to evaluate vaccinations with HIV and/or HCV immunogens, each delivered by replication-defective chimpanzee adenovirus and MVA vectors, in healthy volunteers and in HIV-positive HCV-uninfected patients on ART. We will also test next-generation viral vectored vaccines employing an HCV immunogen fused to HLA class II invariant chain. These clinical studies will be complemented by comprehensive immunomonitoring with the goal of identifying possible immune correlates that could be tested in future efficacy trials.

New projects

We are starting a new project to develop new multi-genotype vaccines for therapy of human papilloma virus (HPV) infections that are responsible for cervical cancer (0.5 million cases per year worldwide) and other anogenital cancers. We exploit the same potent viral vectors for delivery of a novel HPV immunogen that have proven safe and immunogenic for HIV and HCV.

Name Department Institution Country
Professor Tomas Hanke Jenner Institute University of Oxford United Kingdom
Professor Brian J Angus FRCP Tropical Medicine University of Oxford United Kingdom
Dr Cameron Holloway University of Oxford United Kingdom
Prof Stefan Neubauer FMedSci FRCP (RDM) Cardiovascular Medicine University of Oxford United Kingdom
Dr Christian Brander Fundacio irsiCaixa Spain
Professor Benedikt M Kessler Target Discovery Institute University of Oxford United Kingdom
Professor Johnson Mak Deakin University Australia
Professor Arturo Reyes-Sandoval Jenner Institute University of Oxford United Kingdom
Professor Ellie (Eleanor) Barnes Experimental Medicine Division University of Oxford United Kingdom
Dr Nicola Ternette Jenner Institute University of Oxford United Kingdom

Kinloch-de Loes S, Dorrell L, Yang H, Hardy GA, Yerly S, Cellerai C, Vandekerckhove L, De Spielgelaere W, Malatinkova E, Wee Lee Koh W, Johnson MA. 2015. Aviremia 10 Years Postdiscontinuation of Antiretroviral Therapy Initiated During Primary Human Immunodeficiency Virus-1 Infection and Association With Gag-Specific T-Cell Responses. Open Forum Infect Dis, 2 (4), pp. ofv144. Read abstract | Read more

Combination antiretroviral therapy during primary human immunodeficiency virus-1 infection may enable long-term drug-free virological control in rare individuals. We describe a female who maintained aviremia and a normal CD4(+)/CD8(+) T cell ratio for 10 years after stopping therapy, despite a persistent viral reservoir. Cellular immune responses may have contributed to this outcome. Hide abstract

Ternette N, Yang H, Partridge T, Llano A, Cedeño S, Fischer R, Charles PD, Dudek NL et al. 2016. Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells. Eur J Immunol, 46 (1), pp. 60-69. Read abstract | Read more

Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4(+) T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T-cell responses have previously been reported but for which the precise HLA class I-binding sequences have not yet been defined. These results validate and expand the current knowledge of virus-specific antigenic peptide presentation during HIV-1 infection and provide novel targets for T-cell vaccine development. Hide abstract

Ternette N, Block PD, Sánchez-Bernabéu Á, Borthwick N, Pappalardo E, Abdul-Jawad S, Ondondo B, Charles PD, Dorrell L, Kessler BM, Hanke T. 2015. Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. J Virol, 89 (11), pp. 5760-5771. Read abstract | Read more

UNLABELLED: Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE: The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies. Hide abstract

Clutton G, Bridgeman A, Reyes-Sandoval A, Hanke T, Dorrell L. 2015. Transient IL-10 receptor blockade can enhance CD8(+) T cell responses to a simian adenovirus-vectored HIV-1 conserved region immunogen. Hum Vaccin Immunother, 11 (4), pp. 1030-1035. Read abstract | Read more

Viral vector vaccines designed to elicit CD8(+) T cells in non-human primates exert potent control of immunodeficiency virus infections; however, similar approaches have been unsuccessful in humans. Adenoviral vectors elicit potent T cell responses but also induce production of immunosuppressive interleukin-10 (IL-10), which can limit the expansion of T cell responses. We investigated whether inhibiting IL-10 signaling prior to immunization with a candidate adenovirus vectored-HIV-1 vaccine, ChAdV63.HIVconsv, could modulate innate and adaptive immune responses in BALB/c mice. Transient IL-10 receptor blockade led to a modest but significant increase in the total magnitude CD8(+) T cell response to HIVconsv, but did not affect T cell responses to immunodominant epitopes. Anti-IL-10R-treated animals also exhibited greater expression of CD86 on CD11c(+) dendritic cells. Our data support further investigation and optimization of IL-10 blocking strategies to improve the immunogenicity of vaccines based on replication-defective adenoviruses. Hide abstract

Hancock G, Yang H, Yorke E, Wainwright E, Bourne V, Frisbee A, Payne TL, Berrong M et al. 2015. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses. PLoS Pathog, 11 (2), pp. e1004658. Read abstract | Read more

Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control. Hide abstract

Borthwick N, Ahmed T, Ondondo B, Hayes P, Rose A, Ebrahimsa U, Hayton EJ, Black A et al. 2014. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol Ther, 22 (2), pp. 464-475. Read abstract | Read more

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro. Hide abstract

Clutton G, Yang H, Hancock G, Sande N, Holloway C, Angus B, von Delft A, Barnes E et al. 2013. Emergence of a distinct HIV-specific IL-10-producing CD8+ T-cell subset with immunomodulatory functions during chronic HIV-1 infection. Eur J Immunol, 43 (11), pp. 2875-2885. Read abstract | Read more

Interleukin-10 (IL-10) plays a key role in regulating proinflammatory immune responses to infection but can interfere with pathogen clearance. Although IL-10 is upregulated throughout HIV-1 infection in multiple cell subsets, whether this is a viral immune evasion strategy or an appropriate response to immune activation is unresolved. Analysis of IL-10 production at the single cell level in 51 chronically infected subjects (31 antiretroviral (ART) naïve and 20 ART treated) showed that a subset of CD8(+) T cells with a CD25(neg) FoxP3(neg) phenotype contributes substantially to IL-10 production in response to HIV-1 gag stimulation. The frequencies of gag-specific IL-10- and IFN-γ-producing T cells in ART-naïve subjects were strongly correlated and the majority of these IL-10(+) CD8(+) T cells co-produced IFN-γ; however, patients with a predominant IL-10(+) /IFN-γ(neg) profile showed better control of viraemia. Depletion of HIV-specific CD8(+) IL-10(+) cells from PBMCs led to upregulation of CD38 on CD14(+) monocytes together with increased IL-6 production, in response to gag stimulation. Increased CD38 expression was positively correlated with the frequency of the IL-10(+) population and was also induced by exposure of monocytes to HIV-1 in vitro. Production of IL-10 by HIV-specific CD8(+) T cells may represent an adaptive regulatory response to monocyte activation during chronic infection. Hide abstract

Schiffner T, Sattentau QJ, Dorrell L. 2013. Development of prophylactic vaccines against HIV-1. Retrovirology, 10 (1), pp. 72. Read abstract | Read more

The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions. Hide abstract

Holloway CJ, Ntusi N, Suttie J, Mahmod M, Wainwright E, Clutton G, Hancock G, Beak P et al. 2013. Comprehensive cardiac magnetic resonance imaging and spectroscopy reveal a high burden of myocardial disease in HIV patients. Circulation, 128 (8), pp. 814-822. Read abstract | Read more

BACKGROUND: HIV infection continues to be endemic worldwide. Although treatments are successful, it remains controversial whether patients receiving optimal therapy have structural, functional, or biochemical cardiac abnormalities that may underlie their increased cardiac morbidity and mortality. The purpose of this study was to characterize myocardial abnormalities in a contemporary group of HIV-infected individuals undergoing combination antiretroviral therapy. METHODS AND RESULTS: Volunteers with HIV who were undergoing combination antiretroviral therapy and age-matched control subjects without a history of cardiovascular disease underwent cardiac magnetic resonance imaging and spectroscopy for the determination of cardiac function, myocardial fibrosis, and myocardial lipid content. A total of 129 participants were included in this analysis. Compared with age-matched control subjects (n=39; 30.23%), HIV-infected subjects undergoing combination antiretroviral therapy (n=90; 69.77%) had 47% higher median myocardial lipid levels (P <0.003) and 74% higher median plasma triglyceride levels (both P<0.001). Myocardial fibrosis, predominantly in the basal inferolateral wall of the left ventricle, was observed in 76% of HIV-infected subjects compared with 13% of control subjects (P<0.001). Peak myocardial systolic and diastolic longitudinal strain were also lower in HIV-infected individuals than in control subjects and remained statistically significant after adjustment for available confounders. CONCLUSIONS: Comprehensive cardiac imaging revealed cardiac steatosis, alterations in cardiac function, and a high prevalence of myocardial fibrosis in a contemporary group of asymptomatic HIV-infected subjects undergoing combination antiretroviral therapy. Cardiac steatosis and fibrosis may underlie cardiac dysfunction and increased cardiovascular morbidity and mortality in subjects with HIV. Hide abstract

Yang H, Yorke E, Hancock G, Clutton G, Sande N, Angus B, Smyth R, Mak J, Dorrell L. 2013. Improved quantification of HIV-1-infected CD4+ T cells using an optimised method of intracellular HIV-1 gag p24 antigen detection. J Immunol Methods, 391 (1-2), pp. 174-178. Read abstract | Read more

The capacity of CD8+ T cells to inhibit HIV-1 replication in vitro strongly correlates with virus control in vivo. Post-hoc evaluations of HIV-1 vaccine candidates suggest that this immunological parameter is a promising benchmark of vaccine efficacy. Large-scale analysis of CD8+ T cell antiviral activity requires a rapid, robust and economical assay for accurate quantification of HIV-1 infection in primary CD4+ T cells. Detection of intracellular HIV-1 p24 antigen (p24 Ag) by flow cytometry is one such method but it is thought to be less sensitive and quantitative than p24 Ag ELISA. We report that fixation and permeabilisation of HIV-infected cells using paraformaldehyde/50% methanol/Nonidet P-40 instead of a conventional paraformaldehyde/saponin-based protocol improved their detection across multiplicities of infection (MOI) ranging from 10(-2) to 8×10(-5), and by nearly two-fold (p<0.001) at the optimal MOI tested (10(-2)). The frequency of infected cells was strongly correlated with p24 Ag release during culture, thus validating its use as a measure of productive infection. We were also able to quantify infection with a panel of HIV-1 isolates representing the major clades. The protocol described here is rapid and cost-effective compared with ELISA and thus could be a useful component of immune monitoring of HIV-1 vaccines and interventions to reduce viral reservoirs. Hide abstract

Lane J, McLaren PJ, Dorrell L, Shianna KV, Stemke A, Pelak K, Moore S, Oldenburg J et al. 2013. A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A. Hum Mol Genet, 22 (9), pp. 1903-1910. Read abstract | Read more

Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population. Hide abstract

Yang H, Wu H, Hancock G, Clutton G, Sande N, Xu X, Yan H, Huang X et al. 2012. Antiviral inhibitory capacity of CD8+ T cells predicts the rate of CD4+ T-cell decline in HIV-1 infection. J Infect Dis, 206 (4), pp. 552-561. Read abstract | Read more

BACKGROUND: Rare human immunodeficiency virus type 1 (HIV-1)-infected individuals who maintain control of viremia without therapy show potent CD8+ T-cell-mediated suppression of viral replication in vitro. Whether this is a determinant of the rate of disease progression in viremic individuals is unknown. METHODS: We measured CD8+ T-cell-mediated inhibition of a heterologous HIV-1 isolate in 50 HIV-1-seropositive adults with diverse progression rates. Linear mixed models were used to determine whether CD8+ T-cell function could explain variation in the rate of CD4+ T-cell decline. RESULTS: There was a significant interaction between CD8+ T-cell antiviral activity in vitro and the rate of CD4+ T-cell decline in chronically infected individuals (P < .0001). In a second prospective analysis of recently infected subjects followed for up to 3 years, CD8+ T-cell antiviral activity strongly predicted subsequent CD4+ T-cell decline (P < .0001) and explained up to 73% of the interindividual variation in the CD4+ T-cell slope. In addition, it was inversely associated with viral load set point (r = -0.68 and P = .002). CONCLUSIONS: The antiviral inhibitory capacity of CD8+ T cells is highly predictive of CD4+ T-cell loss in early HIV-1 infection. It has potential as a benchmark of effective immunity in vaccine evaluation. Hide abstract

Dorrell L, Yang H, Ondondo B, Dong T, di Gleria K, Suttill A, Conlon C, Brown D et al. 2006. Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine. J Virol, 80 (10), pp. 4705-4716. Read abstract | Read more

Affordable therapeutic strategies that induce sustained control of human immunodeficiency virus type 1 (HIV-1) replication and are tailored to the developing world are urgently needed. Since CD8(+) and CD4(+) T cells are crucial to HIV-1 control, stimulation of potent cellular responses by therapeutic vaccination might be exploited to reduce antiretroviral drug exposure. However, therapeutic vaccines tested to date have shown modest immunogenicity. In this study, we performed a comprehensive analysis of the changes in virus-specific CD8(+) and CD4(+) T-cell responses occurring after vaccination of 16 HIV-1-infected individuals with a recombinant modified vaccinia virus Ankara-vectored vaccine expressing the consensus HIV-1 clade A Gag p24/p17 sequences and multiple CD8(+) T-cell epitopes during highly active antiretroviral therapy. We observed significant amplification and broadening of CD8(+) and CD4(+) gamma interferon responses to vaccine-derived epitopes in the vaccinees, without rebound viremia, but not in two unvaccinated controls followed simultaneously. Vaccine-driven CD8(+) T-cell expansions were also detected by tetramer reactivity, predominantly in the CD45RA(-) CCR7(+) or CD45RA(-) CCR7(-) compartments, and persisted for at least 1 year. Expansion was associated with a marked but transient up-regulation of CD38 and perforin within days of vaccination. Gag-specific CD8(+) and CD4(+) T-cell proliferation also increased postvaccination. These data suggest that immunization with MVA.HIVA is a feasible strategy to enhance potentially protective T-cell responses in individuals with chronic HIV-1 infection. Hide abstract

An exploration of the characteristics of vaccine-induced T cell responses to novel HIV-1 and HCV vaccines and their contribution to protective immunity

HIV-1 and hepatitis C virus (HCV) are major global pathogens with high rates of morbidity and mortality. Co-infection is common, due to overlapping transmission risks. PEACHI (Prevention of hepatitis C and HIV co-infections) is an Oxford-led EU FP7-funded project that aims to develop effective viral vectored vaccines for prevention of HIV-1, HCV and co-infection. The vaccines exploit potent replication-defective viral vectors (simian adenovirus, ChAd and modified vaccinia virus Ankara, MVA) and ...

View project

Development of new vaccines for therapy of high-risk Human Papillomavirus infections

Human papillomaviruses (HPV) are responsible for virtually all cases of cervical cancer and a significant proportion of other anogenital and oropharyngeal cancers. Half a million cases of cervical cancer occur each year in low and middle income countries, largely due to the lack of cytological screening programmes. Licensed HPV vaccines are highly effective in preventing incident infection and consequent pre-malignant disease and could substantially reduce cervical cancers in resource-poor setti ...

View project

Development of new vaccines for therapy of high-risk Human Papillomavirus infections

In collaboration with Prof. Lucy Dorrell at the Jenner Institute, we are aiming to screen MHC-associated peptide sequences presented on primary HPV-driven anogenital cancer tissues for suitable T cell targets. Identified antigen candidates will then be selected and evaluated for their suitability in immunotherapeutic approaches for distinct HR genotypes by implementing them into viral vectors in collaboration with Dr Arturo Reyes-Sandoval at the Jenner Institute.

View project


Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at