Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Inadequate booster uptake threatens the success of immunization campaigns as seen with the recently rolled-out R21 malaria vaccine. The ability to administer both prime and boost immunizations with a single injection would therefore save lives and alleviate health care burdens. We present a platform for delayed delivery of the booster dose that is scalable with existing technology, easily injectable, and protective against malaria in vivo. Using chip-based microfluidics, we encapsulated the R21 malaria vaccine in polymer microcapsules that release their content weeks to months postinjection. Coinjecting microcapsules with the priming dose of the R21 vaccine elicited strong antibody responses in a mouse model and provided 85% of the protection of a standard prime/boost schedule. If confirmed in humans, these results would pave the way for rapid deployment of single-shot prime/boost vaccination, an urgently needed global health intervention.

Original publication

DOI

10.1126/scitranslmed.adw2256

Type

Journal article

Journal

Sci Transl Med

Publication Date

25/06/2025

Volume

17

Keywords

Animals, Capsules, Malaria, Malaria Vaccines, Immunization, Mice, Immunization, Secondary, Female, Humans, Vaccination