Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Lentiviruses, such as HIV-1, infect non-dividing cells by traversing the nuclear pore complex (NPC); however, the detailed molecular processes remain unclear. Here we reconstituted functional HIV-1 nuclear import using permeabilized T cells and isolated HIV-1 cores, which significantly increases import events, and developed an integrated three-dimensional cryo-correlative workflow to specifically target and image 1,489 native HIV-1 cores at 4 distinct nuclear import stages using cryo-electron tomography. We found HIV-1 nuclear import depends on both capsid elasticity and nuclear pore adaptability. The NPC acts as a selective filter, preferentially importing smaller cores, while expanding and deforming to accommodate their passage. Brittle mutant cores fail to enter the NPC, while CPSF6-binding-deficient cores enter but stall within the NPC, leading to impaired nuclear import. This study uncovers the interplay between the HIV-1 core and the NPC and provides a framework to dissect HIV-1 nuclear import and downstream events, such as uncoating and integration.

Original publication

DOI

10.1038/s41564-025-02054-z

Type

Journal article

Journal

Nature microbiology

Publication Date

07/2025

Addresses

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.