register interest

Associate Professor Geraldine Gillespie

Research Area: Immunology
Technology Exchange: Cell sorting, Cellular immunology, Crystallography, Flow cytometry, Microscopy (Confocal) and Protein interaction
Scientific Themes: Immunology & Infectious Disease and Protein Science & Structural Biology
Keywords: CD8+ T lymphocytes, MHC, NK cells, molecular recognition, Killer Ig-like Receptors, epigenetics and imaging
This structural image illustrates how a commonly selected T cell receptor recognised an ususually long peptide presented by B*57 subtypes associated with slower progression to AIDS.

This structural image illustrates how a commonly selected T cell receptor recognised an ususually ...

Section A of this figure illustrates that the -237TNFa promoter polymorphism which is inherited on a B*57 genetic background, can alter the ability of the promoter to produce TNFa mRNA.  Part B demonstrates that the B*57-linked polymorphism arises in promoter regions containing CpG islands, which are prone to methylation in peripheral blood cells, with potential implication for epigenetic control of TNFa.

Section A of this figure illustrates that the -237TNFa promoter polymorphism which is inherited on ...

These FACS profiles demonstrate that even the smallest differences between MHC class I B*57 subtypes, where the peptides are presented in identical formats, can alter their ability to prime certain CD8+ T cells but not others (*).

These FACS profiles demonstrate that even the smallest differences between MHC class I B*57 ...

To produce an effective HIV-1 vaccine it is vital that we understand both the host and viral factors influencing the success of the immune response. In terms of host factors we know that CD8+ T cells play a critical role in the control of HIV-1 replication, and this is best illustrated by the strong association of a small number of MHC class I molecules with slower progression to AIDS. As MHC class I molecules select the repertoire of viral epitopes presented to CD8+ T cell, they shape the immune response against HIV. We are interested in the Caucasian MHC class I molecules, HLA B*5701 and the African counterpart, HLA-B*5703, which consistently associate with prolonged AIDS-free survival. Both B*57 subtypes present a broad spectrum of HIV-1 epitopes derived from the gag protein, a highly conserved HIV proteins whose specific targeting is thought to favourably contribute to sustained viral control. However, it is not entirely clear why a variety of MHC class I molecules that also present conserved epitopes do not effectively control HIV-1. The particular aims of our work is to understand how HIV-infected HLA-B*57+patients achieve longterm control of HIV-1, and whether this relates to the antigen presentation and/or the nature of responding CD8+ T cell repertoire. We are specifically interested in diverse aspects of CD8+ T cell recognition, particularly structural and biophysical aspects of the B*57-TCR interaction, but also in terms of the nature of T cell priming, the importance of naive precursor frequencies and the efficacy of B*57-restricted T cells. In terms of antigen presentation we are interested in molecular features, particularly in relation to the biochemical features of antigen acquisition and processing, the dependence of different antigens on the various components of the antigen presentation machinery and antigen presenting cell types, and the kinetics/patterns of epitope recognition during early infection. Finally, we are also interested in genetic polymorphisms inherited on the B*57 background, particularly those which are present in immune response genes, including the TNFa promoter and Heat Shock Protein 70 family, to understand if these contribute to B*57-mediated control of HIV.

Name Department Institution Country
Professor E. Yvonne Jones FRS FMedSci Structural Biology Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Prof Christian Eggeling (RDM) Investigative Medicine Division Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Professor Chris Garcia Stanford University United States
Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, Walter TS, O'Callaghan CA, Borrow P, Toebes M et al. 2018. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun, 9 (1), pp. 3137. | Show Abstract | Read more

Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.

Ganesh A, Lemongello D, Lee E, Peterson J, McLaughlin BE, Ferre AL, Gillespie GM, Fuchs D, Deeks SG, Hunt PW et al. 2016. Immune Activation and HIV-Specific CD8(+) T Cells in Cerebrospinal Fluid of HIV Controllers and Noncontrollers. AIDS Res Hum Retroviruses, 32 (8), pp. 791-800. | Show Abstract | Read more

The central nervous system (CNS) is an important target of HIV, and cerebrospinal fluid (CSF) can provide a window into host-virus interactions within the CNS. The goal of this study was to determine whether HIV-specific CD8(+) T cells are present in CSF of HIV controllers (HC), who maintain low to undetectable plasma viremia without antiretroviral therapy (ART). CSF and blood were sampled from 11 HC, defined based on plasma viral load (VL) consistently below 2,000 copies/ml without ART. These included nine elite controllers (EC, plasma VL <40 copies/ml) and two viremic controllers (VC, VL 40-2,000 copies/ml). All controllers had CSF VL <40 copies/ml. Three comparison groups were also sampled: six HIV noncontrollers (NC, VL >10,000 copies/ml, no ART); seven individuals with viremia suppressed due to ART (Tx, VL <40 copies/ml); and nine HIV-negative controls. CD4(+) and CD8(+) T cells in CSF and blood were analyzed by flow cytometry to assess expression of CCR5, activation markers CD38 and HLA-DR, and memory/effector markers CD45RA and CCR7. HIV-specific CD8(+) T cells were quantified by major histocompatibility complex class I multimer staining. HIV-specific CD8(+) T cells were detected ex vivo at similar frequencies in CSF of HC and noncontrollers; the highest frequencies were in individuals with CD4 counts below 500 cells/μl. The majority of HIV-specific CD8(+) T cells in CSF were effector memory cells expressing CCR5. Detection of these cells in CSF suggests active surveillance of the CNS compartment by HIV-specific T cells, including in individuals with long-term control of HIV infection in the absence of therapy.

Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, Reed JS, Gilbride RM, Ainslie E, Morrow DW et al. 2016. Broadly targeted CD8⁺ T cell responses restricted by major histocompatibility complex E. Science, 351 (6274), pp. 714-720. | Show Abstract | Read more

Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αβ(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.

Stewart-Jones GB, Simpson P, van der Merwe PA, Easterbrook P, McMichael AJ, Rowland-Jones SL, Jones EY, Gillespie GM. 2012. Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. Proc Natl Acad Sci U S A, 109 (50), pp. E3483-E3492. | Show Abstract | Read more

Polymorphic differences distinguishing MHC class I subtypes often permit the presentation of shared epitopes in conformationally identical formats but can affect T-cell repertoire selection, differentially impacting autoimmune susceptibilities and viral clearance in vivo. The molecular mechanisms underlying this effect are not well understood. We performed structural, thermodynamic, and functional analyses of a conserved T-cell receptor (TCR) which is frequently expanded in response to a HIV-1 epitope when presented by HLA-B*5701 but is not selected by HLA-B*5703, which differs from HLA-B*5701 by two concealed polymorphisms. Our findings illustrate that although both HLA-B*57 subtypes display the epitope in structurally conserved formats, the impact of their polymorphic differences occurs directly as a consequence of TCR ligation, primarily because of peptide adjustments required for TCR binding, which involves the interplay of polymorphic residues and water molecules. These minor differences culminate in subtype-specific differential TCR-binding kinetics and cellular function. Our data demonstrate a potential mechanism whereby the most subtle MHC class I micropolymorphisms can influence TCR use and highlight their implications for disease outcomes.

Simpson PD, Moysi E, Wicks K, Sudan K, Rowland-Jones SL, McMichael AJ, Knight J, Gillespie GM. 2012. Functional differences exist between TNFα promoters encoding the common -237G SNP and the rarer HLA-B*5701-linked A variant. PLoS One, 7 (7), pp. e40100. | Show Abstract | Read more

A large body of functional and epidemiological evidence have previously illustrated the impact of specific MHC class I subtypes on clinical outcome during HIV-1 infection, and these observations have recently been re-iterated in genome wide association studies (GWAS). Yet because of the complexities surrounding GWAS-based approaches and the lack of knowledge relating to the identity of rarer single nucleotide polymorphism (SNP) variants, it has proved difficult to discover independent causal variants associated with favourable immune control. This is especially true of the candidate variants within the HLA region where many of the recently proposed disease influencing SNPs appear to reflect linkage with 'protective' MHC class I alleles. Yet causal MHC-linked SNPs may exist but remain overlooked owing to the complexities associated with their identification. Here we focus on the ancestral TNFα promoter -237A variant (rs361525), shown historically to be in complete linkage disequilibrium with the 'protective' HLA-B*5701 allele. Many of the ancestral SNPs within the extended TNFα promoter have been associated with both autoimmune conditions and disease outcomes, however, the direct role of these variants on TNFα expression remains controversial. Yet, because of the important role played by TNFα in HIV-1 infection, and given the proximity of the -237 SNP to the core promoter, its location within a putative repressor region previously characterized in mice, and its disruption of a methylation-susceptible CpG dinucleotide motif, we chose to carefully evaluate its impact on TNFα production. Using a variety of approaches we now demonstrate that carriage of the A SNP is associated with lower TNFα production, via a mechanism not readily explained by promoter methylation nor the binding of transcription factors or repressors. We propose that the -237A variant could represent a minor causal SNP that additionally contributes to the HLA-B*5701-mediated 'protective' effect during HIV-1 infection.

Ranasinghe SRF, Kramer HB, Wright C, Kessler BM, di Gleria K, Zhang Y, Gillespie GM, Blais M-E, Culshaw A, Pichulik T et al. 2011. The Antiviral Efficacy of HIV-Specific CD8(+) T-Cells to a Conserved Epitope Is Heavily Dependent on the Infecting HIV-1 Isolate PLOS PATHOGENS, 7 (5), | Show Abstract | Read more

A major challenge to developing a successful HIV vaccine is the vast diversity of viral sequences, yet it is generally assumed that an epitope conserved between different strains will be recognised by responding T-cells. We examined whether an invariant HLA-B8 restricted Nef90-97epitope FL8 shared between five high titre viruses and eight recombinant vaccinia viruses expressing Nef from different viral isolates (clades A-H) could activate antiviral activity in FL8-specific cytotoxic T-lymphocytes (CTL). Surprisingly, despite epitope conservation, we found that CTL antiviral efficacy is dependent on the infecting viral isolate. Only 23% of Nef proteins, expressed by HIV-1 isolates or as recombinant vaccinia-Nef, were optimally recognised by CTL. Recognition of the HIV-1 isolates by CTL was independent of clade-grouping but correlated with virus-specific polymorphisms in the epitope flanking region, which altered immunoproteasomal cleavage resulting in enhanced or impaired epitope generation. The finding that the majority of virus isolates failed to present this conserved epitope highlights the importance of viral variance in CTL epitope flanking regions on the efficiency of antigen processing, which has been considerably underestimated previously. This has important implications for future vaccine design strategies since efficient presentation of conserved viral epitopes is necessary to promote enhanced anti-viral immune responses. © 2011 Ranasinghe et al.

Brackenridge S, Evans EJ, Toebes M, Goonetilleke N, Liu MKP, di Gleria K, Schumacher TN, Davis SJ, McMichael AJ, Gillespie GM. 2011. An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol, 85 (11), pp. 5415-5422. | Show Abstract | Read more

Mutations within MHC class I-restricted epitopes have been studied in relation to T cell-mediated immune escape, but their impact on NK cells via interaction with killer Ig-like receptors (KIRs) during early HIV infection is poorly understood. In two patients acutely infected with HIV-1, we observed the appearance of a mutation within the B*57-restricted TW10 epitope (G9E) that did not facilitate strong escape from T cell recognition. The NK cell receptor KIR3DL1, carried by these patients, is known to recognize HLA-B*5703 and is associated with good control of HIV-1. Therefore, we tested whether the G9E mutation influenced the binding of HLA-B*5703 to soluble KIR3DL1 protein by surface plasmon resonance, and while the wild-type sequence and a second (T3N) variant were recognized, the G9E variant abrogated KIR3DL1 binding. We extended the study to determine the peptide sensitivity of KIR3DL1 interaction with epitopes carrying mutations near the C termini of TW10 and a second HLA-B*57-restricted epitope, IW9. Several amino acid changes interfered with KIR3DL1 binding, the most extreme of which included the G9E mutation commonly selected by HLA-B*57. Our results imply that during HIV-1 infection, some early-emerging variants could affect KIR-HLA interaction, with possible implications for immune recognition.

van Boxel GI, Stewart-Jones G, Holmes S, Sainsbury S, Shepherd D, Gillespie GMA, Harlos K, Stuart DI, Owens R, Jones EY. 2009. Some lessons from the systematic production and structural analysis of soluble (alpha)(beta) T-cell receptors. J Immunol Methods, 350 (1-2), pp. 14-21. | Show Abstract | Read more

T-cell receptors (TCRs) are membrane proteins which recognize antigens with high specificity forming the basis of the cellular immune response. The study of these receptors has been limited by the challenges in expressing sufficient quantities of stable soluble protein. Here we report our systematic approach for generating soluble, (alpha)(beta)-TCRs, for X-ray crystallographic studies. By using small-scale expression screens, novel standardized quality control mechanisms and crystallization and imaging robots we were able to add significantly to the current TCR structural database. Our success in crystallizing both isolated TCRs and Major histocompatibility complex (MHC):TCR complexes has provided us with sufficient data to develop focused crystallization screens, which have proved generically useful for the crystallization of this family of proteins and complexes.

Gillespie GMA, Bashirova A, Dong T, McVicar DW, Rowland-Jones SL, Carrington M. 2007. Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T cell epitopes. AIDS Res Hum Retroviruses, 23 (3), pp. 451-455. | Show Abstract | Read more

In HIV-1 infection, the synergistic association of a subset of Bw4 MHC class I molecules and the activating killer inhibitory receptor (KIR), KIR3DS1, with prolonged AIDS-free survival has been reported. As KIRs represent a diverse group of MHC class I receptors, we questioned whether Bw4 MHC class I molecules expressing isoleucine at position 80 (Bw4Ile80) and in complex with HIV-1-derived T cell epitopes represented KIR3DS1 ligands. MHC class I tetramers are powerful tools for the detection of T cell receptor-MHC class I interactions, and have recently been used to evaluate KIR-MHC class I binding ex vivo. Specifically, this approach has been successfully utilized to assess binding of Bw4 MHC class I tetramers to KIR3DL1, an inhibitory KIR and allele of KIR3DS1. In this study we generated a diverse panel of HIV-1-specific Bw4Ile80 MHC class I tetramers and tested its ability to bind transiently expressed KIR3DS1 on 293-T cells. Using flow cytometry analysis, the expression of KIR3DS1 on 293-T cells was confirmed by anti-FLAG BioM2 staining, prior to incubation with PE-conjugated MHC class I tetramers. Despite choosing a broad array of peptide epitopes and diverse Bw4Ile80 MHC class I molecules, we were unable to detect tetramer binding to KIR3DS1. We speculate that our negative finding may be a consequence of the MHC class I molecules and peptide epitopes chosen, but could also relate to key amino acid differences that distinguish KIR3DS1 from KIR3DL1.

Gillespie GMA, Stewart-Jones G, Rengasamy J, Beattie T, Bwayo JJ, Plummer FA, Kaul R, McMichael AJ, Easterbrook P, Dong T et al. 2006. Strong TCR conservation and altered T cell cross-reactivity characterize a B*57-restricted immune response in HIV-1 infection. J Immunol, 177 (6), pp. 3893-3902. | Show Abstract | Read more

HLA-B*57 is associated with slower disease progression to AIDS, and CD8+ T cell responses to B*57-restricted epitopes are thought to contribute to this protective effect. In this study, we evaluate the B*57-restricted p24 KAFSPEVIPMF (KF11) immune response which is immunodominant during chronic infection. Previously, we observed that the KF11 clade variants KGFNPEVIPMF [A2G,S4N] and KAFNPEIIMPF [S4N,V7I], sharing a position 4 mutation, are differentially recognized by KF11-specific T cells. By combining structural and cellular studies, we now demonstrate that the KF11 and [A2G,S4N] epitopes induce distinct functional responses in [A2G,S4N] and KF11-specific T cells, respectively, despite minimal structural differences between the individual B*57-peptide complexes. Recently, we also elucidated the highly distinct structure of KF11 in complex with B*5703, and have now characterized the CD8+ T cell repertoire recognizing this epitope. We now report striking features of TCR conservation both in terms of TCR Valpha and Vbeta chain usage, and throughout the hypervariable region. Collectively, our findings highlight unusual features of the B*5701/B*5703-KF11-specific immune responses which could influence disease progression and that might be important to consider when designing future vaccine regimens.

Stewart-Jones GBE, Gillespie G, Overton IM, Kaul R, Roche P, McMichael AJ, Rowland-Jones S, Jones EY. 2005. Structures of three HIV-1 HLA-B*5703-peptide complexes and identification of related HLAs potentially associated with long-term nonprogression. J Immunol, 175 (4), pp. 2459-2468. | Show Abstract | Read more

Long-term nonprogression during acute HIV infection has been strongly associated with HLA-B*5701 or HLA-B*5703. In this study, we present the high resolution crystal structures of HLA-B*5703 complexes with three HIV-1 epitopes: ISPRTLNAW (ISP), KAFSPEVIPMF (KAF-11), and KAFSPEVI (KAF-8). These reveal peptide anchoring at position 2 and their C termini. The different peptide lengths and primary sequences are accommodated by variation in the specific contacts made to the HLA-B*5703, flexibility in water structure, and conformational adjustment of side chains within the peptide-binding groove. The peptides adopt markedly different conformations, and trap variable numbers of water molecules, near a cluster of tyrosine side chains located in the central region of the peptide-binding groove. The KAF-11 epitope completely encompasses the shorter KAF-8 epitope but the peptides are presented in different conformations; the KAF-11 peptide arches out of the peptide-binding groove, exposing a significant main chain surface area. Bioinformatic analysis of the MHC side chains observed to contribute to the peptide anchor specificity, and other specific peptide contacts, reveals HLA alleles associated with long-term nonprogression and a number of related HLA alleles that may share overlapping peptide repertoires with HLA-B*5703 and thus may display a similar capacity for efficient immune control of HIV-1 infection.

Gillespie GMA, Pinheiro S, Sayeid-Al-Jamee M, Alabi A, Kaye S, Sabally S, Sarge-Njie R, Njai H, Joof K, Jaye A et al. 2005. CD8+ T cell responses to human immunodeficiency viruses type 2 (HIV-2) and type 1 (HIV-1) gag proteins are distinguishable by magnitude and breadth but not cellular phenotype. Eur J Immunol, 35 (5), pp. 1445-1453. | Show Abstract | Read more

The mechanisms underlying the relatively slow progression of human immunodeficiency virus type 2 (HIV-2) compared with HIV-1 infection are undefined and could be a result of more effective immune responses. We used HIV-2 and HIV-1 IFN-gamma enzyme-linked immunospot assays to evaluate CD8(+) T cell responses in antiretroviral-naive HIV-2- ('HIV-2(+)') and HIV-1-infected ('HIV-1(+)') individuals. Gag-specific responses were detected in the majority of HIV-2(+) and HIV-1(+) subjects. Overlapping gag peptide analysis indicated a significantly greater magnitude and breadth of responses in the HIV-1(+) cohort, and this difference was attributable to low responses in HIV-2(+) subjects with undetectable viral load (medians 2107 and 512 spot-forming units per 10(6) PBMC, respectively, p=0.007). We investigated the phenotype of viral epitope-specific CD8(+) T cells identified with HLA-B53- and HLA-B58-peptide tetramers (8 HIV-2(+), 11 HIV-1(+) subjects). HIV-2-specific CD8(+) T cells were predominantly CD27(+) CD45RA(-), and only a minority expressed perforin. The limited breadth and low frequency of CD8(+) T cell responses to HIV-2 gag in aviremic HIV-2(+) subjects suggests that these responses reflect antigen load in plasma, as is the case in HIV-1 infection. Immune control of HIV-2 does not appear to be related to the frequency of perforin-expressing virus-specific CD8(+) T cells.

Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, Kaye S, Ojuola O, Gillespie GMA, Vargas Cuero AL et al. 2003. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest, 111 (11), pp. 1747-1755. | Show Abstract | Read more

Immunization of newborns against viral infections may be hampered by ineffective CD8(+) T cell responses. To characterize the function of CD8(+) T lymphocytes in early life, we studied newborns with congenital human cytomegalovirus (HCMV) infection. We demonstrate that HCMV infection in utero leads to the expansion and the differentiation of mature HCMV-specific CD8(+) T cells, which have similar characteristics to those detected in adults. High frequencies of HCMV-specific CD8(+) T cells were detected by ex vivo tetramer staining as early as after 28 weeks of gestation. During the acute phase of infection, these cells had an early differentiation phenotype (CD28(-)CD27(+)CD45RO(+), perforin(low)), and they acquired a late differentiation phenotype (CD28(-)CD27(-)CD45RA(+), perforin(high)) during the course of the infection. The differentiated cells showed potent perforin-dependent cytolytic activity and produced antiviral cytokines. The finding of a mature and functional CD8(+) T cell response to HCMV suggests that the machinery required to prime such responses is in place during fetal life and could be used to immunize newborns against viral pathogens.

Papagno L, Appay V, Sutton J, Rostron T, Gillespie GMA, Ogg GS, King A, Makadzanhge AT, Waters A, Balotta C et al. 2002. Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin Exp Immunol, 130 (3), pp. 509-517. | Show Abstract | Read more

The mechanisms underlying non-progression in HIV-1 infection are not well understood; however, this state has been associated previously with strong HIV-1-specific CD8+ T cell responses and the preservation of proliferative CD4+ T cell responses to HIV-1 antigens. Using a combination of interferon-gamma (IFN-gamma) ELISpot assays and tetramer staining, the HIV-1-specific CD8+ T cell populations were quantified and characterized in untreated long-term HIV-1-infected non-progressors and individuals with slowly progressive disease, both in relation to CD4+ T cell responses, and in comparison with responses to cytomegalovirus (CMV) antigens. High levels of CD8+ T cell responses specific for HIV-1 or CMV were observed, but neither their frequency nor their phenotype seemed to differ between the two patient groups. Moreover, while CMV-specific CD4+ T cell responses were preserved in these donors, IFN-gamma release by HIV-1-specific CD4+ T cells was generally low. These data raise questions with regard to the role played by CD8+ T cells in the establishment and maintenance of long-term non-progression.

Oxenius A, Sewell AK, Dawson SJ, Günthard HF, Fischer M, Gillespie GM, Rowland-Jones SL, Fagard C, Hirschel B, Phillips RE et al. 2002. Functional discrepancies in HIV-specific CD8+ T-lymphocyte populations are related to plasma virus load. J Clin Immunol, 22 (6), pp. 363-374. | Show Abstract | Read more

The potent ability of current antiretroviral drug regimens to control human immunodeficiency Virus-1 (HIV-1) replication, in conjunction with the clinical practice of structured therapeutic interruptions, provides a system in which virus levels are manipulated during a persistent infection in humans. Here, we exploit this system to examine the impact of variable plasma virus load (pVL) on the functionality of HIV-specific CD8+ T-lymphocyte populations. Using both ELISpot methodology and intracellular cytokine staining for interferon (IFN)-gamma to assess functional status, together with fluorochrome-labeled peptide-major histocompatibility complex (pMHC) class I tetramer analysis to detect the physical presence of CD8+ T lymphocytes expressing cognate T-cell receptors (TCRs), we observed that the proportion of HIV-specific CD8+ T lymphocytes capable of mounting an effector response to antigen challenge directly ex vivo is related to the kinetics of virus exposure. Specifically, (a) after prolonged suppression of pVL with antiretroviral therapy (ART), physical and functional measures of HIV-specific CD8+ T-lymphocyte frequencies approximated; and (b) the percentage of functionally responsive cells in the HIV-specific CD8+ T lymphocyte populations declined substantially when therapy was discontinued and pVL recrudesced in the same patients. These results corroborate and extend observations in animal models that describe nonresponsive CD8+ T lymphocytes in the presence of high levels of antigen load and have implications for the interpretation of quantitative data generated by methods that rely on functional readouts.

Chakraborty R, Gillespie GMA, Reinis M, Rostron T, Dong T, Philpott S, Burger H, Weiser B, Peto T, Rowland-Jones SL. 2002. HIV-1-specific CD8 T cell responses in a pediatric slow progressor infected as a premature neonate. AIDS, 16 (15), pp. 2085-2087. | Show Abstract | Read more

We describe the long-term survival of an individual infected with HIV-1 during extrauterine life as a premature newborn. In the absence of viral attenuation in the Nef/LTR structure or significant co-receptor polymorphisms, slow progression was associated with the strong HIV-1-specific broadly cross-reactive CD8 T cell responses. HIV-1 infection as early as 25 weeks' gestation may thus results in the development of immune responses that control viral replication and lead to prolonged survival.

Gillespie GMA, Kaul R, Dong T, Yang H-B, Rostron T, Bwayo JJ, Kiama P, Peto T, Plummer FA, McMichael AJ, Rowland-Jones SL. 2002. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57. AIDS, 16 (7), pp. 961-972. | Show Abstract | Read more

OBJECTIVES: To determine whether CD8 T lymphocytes from HIV-1-infected patients expressing B*5701 and B*5703 show broad cross-reactivity against different variants of a conserved p24 epitope, which might account for the good prognosis of HIV-1-infected individuals with HLA-B*57. DESIGN: B*5701+ and B*5703+ were recruited from Nairobi, Kenya and from Oxford, UK. All patients had been HIV positive for at least 8 years and could be categorized as slow progressors. METHODS: CD8 cytotoxic T cell clones were generated from B*5701+ and B*5703+ donors and tested for their ability to recognize clade variants of an index p24 epitope in standard cytolytic assays. Cross-reactive responses in freshly isolated peripheral blood mononuclear cells (PBMC) were assessed by interferon-gamma (IFNgamma) production and tetramer binding. RESULTS: Broad cross-clade reactivity for both cytolysis and tetramer binding was observed in CD8 T cell clones from patients harbouring the index epitope sequence. Patterns of cross-reactivity were similar in freshly isolated PBMC but varied between individuals in terms of strength and breath of responses generated. One common variant induced an unusual response with tetramer binding but often failed to induce IFNgamma production, and another was a weak stimulator of both IFNgamma and cytolytic activity. CONCLUSION: B*5701+ and B5703+ donors demonstrate broad functional cross-reactivity to both common and rare variants of a dominant p24 epitope, which could be relevant to the association of B*57 alleles with slow progression to AIDS.

Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, Ogg GS, King A, Lechner F, Spina CA et al. 2002. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med, 8 (4), pp. 379-385. | Show Abstract | Read more

The viruses HIV-1, Epstein-Barr virus (EBV), cytomegalovirus (CMV) and hepatitis C virus (HCV) are characterized by the establishment of lifelong infection in the human host, where their replication is thought to be tightly controlled by virus-specific CD8+ T cells. Here we present detailed studies of the differentiation phenotype of these cells, which can be separated into three distinct subsets based on expression of the costimulatory receptors CD28 and CD27. Whereas CD8+ T cells specific for HIV, EBV and HCV exhibit similar characteristics during primary infection, there are significant enrichments at different stages of cellular differentiation in the chronic phase of persistent infection according to the viral specificity, which suggests that distinct memory T-cell populations are established in different virus infections. These findings challenge the current definitions of memory and effector subsets in humans, and suggest that ascribing effector and memory functions to subsets with different differentiation phenotypes is no longer appropriate.

Lawson TM, Man S, Wang EC, Williams S, Amos N, Gillespie GM, Moss PA, Borysiewicz LK. 2001. Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR. Int Immunol, 13 (11), pp. 1383-1390. | Show Abstract | Read more

We have shown that the dominance of CD8+ T cells expressing TCR Vbeta17 in the adult HLA-A*0201-restricted influenza A/M1(58-66)-specific response is acquired following first antigen exposure. Despite the acquired dominance of Vbeta17+ cells, subdominant M1(58-66)-specific clones expressing non-Vbeta17+ TCR persist in all individuals. To determine whether the affinity of the expressed TCR for the HLA-A*0201/M1(58-66) complex could influence functional properties, M1(58-66)-specific clones expressing subdominant (non-Vbeta17+) TCR were compared to cytotoxic T lymphocyte (CTL) clones expressing dominant (Vbeta17+) TCR. The Vbeta17+ CTL required up to 10,000-fold lower amounts of M1 peptide to mediate lysis compared to CTL clones expressing other Vbeta gene segments. All Vbeta17+ CTL clones tested bound HLA-A*0201/M1(58-66) tetramer, but two of three CTL clones expressing other TCR did not bind tetramer. The inability of non-Vbeta17+ CTL to bind tetramer did not correlate with phenotype, CD8 dependence or with cytokine production profiles. This suggests a limitation for the use of tetramers in examining subdominant T cell responses. Together these findings suggest that Vbeta17+ CTL which dominate the HLA-A*0201-restricted CTL response against influenza A are not functionally distinct from subdominant non-Vbeta17+ CTL. The dominance of Vbeta17+ CTL is likely to result from a competitive advantage due to superior CTL avidity for the HLA-A*0201/M1(58-66) complex.

Cited:

221

European Pubmed Central

Gillespie GM, Wills MR, Appay V, O'Callaghan C, Murphy M, Smith N, Sissons P, Rowland-Jones S, Bell JI, Moss PA. 2000. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol, 74 (17), pp. 8140-8150. | Show Abstract | Read more

Human cytomegalovirus (HCMV) infection is largely asymptomatic in the immunocompetent host, but remains a major cause of morbidity in immunosuppressed individuals. Using the recently described technique of staining antigen-specific CD8(+) T cells with peptide-HLA tetrameric complexes, we have demonstrated high levels of antigen-specific cells specific for HCMV peptides and show that this may exceed 4% of CD8(+) T cells in immunocompetent donors. Moreover, by staining with tetramers in combination with antibodies to cell surface markers and intracellular cytokines, we demonstrate functional heterogeneity of HCMV-specific populations. A substantial proportion of these are effector cytotoxic T lymphocytes, as demonstrated by their ability to lyse peptide-pulsed targets in "fresh" killing assays. These data suggest that the immune response to HCMV is periodically boosted by a low level of HCMV replication and that sustained immunological surveillance contributes to the maintenance of host-pathogen homeostasis. These observations should improve our understanding of the immunobiology of persistent viral infection.

Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA et al. 2000. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med, 192 (1), pp. 63-75. | Show Abstract | Read more

The use of peptide-human histocompatibility leukocyte antigen (HLA) class I tetrameric complexes to identify antigen-specific CD8(+) T cells has provided a major development in our understanding of their role in controlling viral infections. However, questions remain about the exact function of these cells, particularly in HIV infection. Virus-specific cytotoxic T lymphocytes exert much of their activity by secreting soluble factors such as cytokines and chemokines. We describe here a method that combines the use of tetramers and intracellular staining to examine the functional heterogeneity of antigen-specific CD8(+) T cells ex vivo. After stimulation by specific peptide antigen, secretion of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein (MIP)-1beta, and perforin is analyzed by FACS((R)) within the tetramer-positive population in peripheral blood. Using this method, we have assessed the functional phenotype of HIV-specific CD8(+) T cells compared with cytomegalovirus (CMV)-specific CD8(+) T cells in HIV chronic infection. We show that the majority of circulating CD8(+) T cells specific for CMV and HIV antigens are functionally active with regards to the secretion of antiviral cytokines in response to antigen, although a subset of tetramer-staining cells was identified that secretes IFN-gamma and MIP-1beta but not TNF-alpha. However, a striking finding is that HIV-specific CD8(+) T cells express significantly lower levels of perforin than CMV-specific CD8(+) T cells. This lack of perforin is linked with persistent CD27 expression on HIV-specific cells, suggesting impaired maturation, and specific lysis ex vivo is lower for HIV-specific compared with CMV-specific cells from the same donor. Thus, HIV-specific CD8(+) T cells are impaired in cytolytic activity.

Gillespie G, Mutis T, Schrama E, Kamp J, Esendam B, Falkenburg JF, Goulmy E, Moss P. 2000. HLA class I-minor histocompatibility antigen tetramers select cytotoxic T cells with high avidity to the natural ligand. Hematol J, 1 (6), pp. 403-410. | Show Abstract | Read more

INTRODUCTION: Cytotoxic T cells specific for the hematopoietic system-restricted minor histocompatibility antigens HA-1 and HA-2 are potential tools for the treatment of relapsed leukemia after minor histocompatibility antigen mismatched bone marrow transplantation. HA-1/HA-2-specific cytotoxic T cells with strong cytotoxic activity against HA-1/HA-2 positive target cells can be generated in vitro using HA-1 and HA-2 peptide-pulsed dendritic cells as antigen presenting cells. MATERIAL AND METHODS: We used HLA-A2 HA-1/HA-2 tetramers (HA-1(A2)/HA-2(A2) tetramers) to monitor the in vitro generation of HA-1- or HA-2-specific cytotoxic T cells. RESULTS: We show that the intensity of the tetramer-staining of the HA-1/HA-2-specific cytotoxic T cells strongly correlates with their capability to recognize mHag positive target cells. The bright tetramer-staining cytotoxic T cells lyse target cells expressing the natural ligand. The dim tetramer-staining cytotoxic T cells fail to lyse natural ligand positive target cells and lyse peptide-pulsed target cells only. The frequency of bright tetramer-staining, high avidity minor histocompatibility antigen-specific CTLs increases significantly upon appropriate antigen-specific restimulations. CONCLUSION: Our results demonstrate that HLA class I-minor histocompatibility antigen tetramers are useful tools for monitoring and selection of high avidity HA-1- and HA-2-specific cytotoxic T cells for adoptive immunotherapy.

Cited:

144

European Pubmed Central

Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E. 1999. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med, 5 (7), pp. 839-842. | Show Abstract | Read more

Graft-versus-host disease (GvHD) is a chief complication of allogeneic bone marrow transplantation. In HLA-identical bone marrow transplantation, GvHD may be induced by disparities in minor histocompatibility antigens (mHags) between the donor and the recipient, with the antigen being present in the recipient and not in the donor. Cytotoxic T lymphocytes (CTLs) specific for mHags of the recipients can be isolated from the blood of recipients with severe GvHD (ref. 3). A retrospective study demonstrated an association between mismatch for mHags HA-1, -2, -4 and -5 and the occurrence of GvHD in adult recipients of bone marrow from HLA genotypically identical donors. Tetrameric HLA-peptide complexes have been used to visualize and quantitate antigen-specific CTLs in HIV-infected individuals and during Epstein-Barr virus and lymphocytic choriomeningitis virus infections. Here we show the direct ex vivo visualization of mHag-specific CTLs during GvHD using tetrameric HLA-class and I-mHag HA-1 and HY peptide complexes. In the peripheral blood of 17 HA-1 or HY mismatched marrow recipients, HA-1- and HY-specific CTLs were detected as early as 14 days after bone marrow transplantation. The tetrameric complexes demonstrated a significant increase in HA-1- and HY-specific CTLs during acute and chronic GvHD, which decreased after successful GvHD treatment. HLA class I-mHag peptide tetramers may serve as clinical tools for the diagnosis and monitoring of GvHD patients.

Allen RL, Gillespie GM, Hall F, Edmonds S, Hall MA, Wordsworth BP, McMichael AJ, Bowness P. 1997. Multiple T cell expansions are found in the blood and synovial fluid of patients with reactive arthritis. J Rheumatol, 24 (9), pp. 1750-1757. | Show Abstract

OBJECTIVE: To look for evidence of T lymphocyte expansions in the blood and synovial fluid (SF) of patients with reactive arthritis (ReA). METHODS: Paired peripheral blood and synovial samples from 10 patients with ReA were studied by dual color flow cytometry using T cell receptor (TCR) V beta specific and CD4 or CD8 specific antibodies. Two synovial CD8 expansions were studied by 3 color flow cytometry. Peripheral blood samples from 13 healthy, age matched individuals were studied as controls. RESULTS: Statistically significant expansions were observed in all patients, occurring in blood and SF CD4 and CD8 compartments, but were most common in the synovial CD8 compartment. Expansions studied in further detail displayed an activated "memory" phenotype. A synovial BV22S1/CD8 expansion was seen in 5/6 patients with sexually acquired ReA. CONCLUSION: Multiple T lymphocyte expansions are found in both the blood and SF of patients with ReA. Expansions were most commonly found in the synovial CD8 compartment, where they appeared to express both activation and memory markers. This indicates that T lymphocytes (and in particular cytotoxic T cells) may play a pathogenic role in ReA. These findings are consistent with either an antigen or a superantigen driven response.

Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ. 1996. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med, 2 (8), pp. 906-911. | Show Abstract | Read more

Primary infection with Epstein-Barr virus often results in the clinical syndrome of acute infectious mononucleosis (glandular fever). This illness is characterized by a striking lymphocytosis, the nature of which has been controversial. We show that large monoclonal or oligoclonal populations of CD8+ T cells account for a significant proportion of the lymphocytosis and provide molecular evidence that these populations have been driven by antigen. The results suggest that the selective and massive expansion of a few dominant clones of CD8+ T cells is an important feature of the primary response to this virus.

Cited:

40

European Pubmed Central

Moss P, Gillespie G, Frodsham P, Bell J, Reyburn H. 1996. Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood, 87 (8), pp. 3297-3306. | Show Abstract

Patients with paraproteinemia have abnormalities in their T-cell subsets including inversion of the CD4:CD8 ratio and increased expression of activation markers. Recently, distortions in T-cell receptor (TCR) TCRAV and TCRBV gene segment expression have been reported, although the significance of these observations is unclear given the finding of clonal populations of CD8+ T cells in healthy elderly individuals. We have used an extensive range of TCR V-region-specific monoclonal antibodies to assess TCRAV and TCRBV expression in patients with myeloma and paraproteinemia. TCR sequence analysis was used to assess the clonality of expansions and 3-color fluorescence-activated cell sorting analysis determined the phenotype of the expanded populations. The patients show novel oligoclonal expansions within the CD4+ subset and show an increased frequency of CD8+ expansions. Oligoclonal CD4+ T cells belong to the rare CD4+CD28- T-cell subset, a phenotype associated with granular morphology. CD45RA and CD11b are expressed on many of the CD8 T-cell expansions. Comparison of T-cell receptor sequences from two T-cell clones in one patient suggests a possible role for a common peptide antigen in the generation of the expansions. Further work is needed to identify the relevance of such T cells to the B-cell proliferation.

Stewart-Jones GB, Simpson P, van der Merwe PA, Easterbrook P, McMichael AJ, Rowland-Jones SL, Jones EY, Gillespie GM. 2012. Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. Proc Natl Acad Sci U S A, 109 (50), pp. E3483-E3492. | Show Abstract | Read more

Polymorphic differences distinguishing MHC class I subtypes often permit the presentation of shared epitopes in conformationally identical formats but can affect T-cell repertoire selection, differentially impacting autoimmune susceptibilities and viral clearance in vivo. The molecular mechanisms underlying this effect are not well understood. We performed structural, thermodynamic, and functional analyses of a conserved T-cell receptor (TCR) which is frequently expanded in response to a HIV-1 epitope when presented by HLA-B*5701 but is not selected by HLA-B*5703, which differs from HLA-B*5701 by two concealed polymorphisms. Our findings illustrate that although both HLA-B*57 subtypes display the epitope in structurally conserved formats, the impact of their polymorphic differences occurs directly as a consequence of TCR ligation, primarily because of peptide adjustments required for TCR binding, which involves the interplay of polymorphic residues and water molecules. These minor differences culminate in subtype-specific differential TCR-binding kinetics and cellular function. Our data demonstrate a potential mechanism whereby the most subtle MHC class I micropolymorphisms can influence TCR use and highlight their implications for disease outcomes.

Simpson PD, Moysi E, Wicks K, Sudan K, Rowland-Jones SL, McMichael AJ, Knight J, Gillespie GM. 2012. Functional differences exist between TNFα promoters encoding the common -237G SNP and the rarer HLA-B*5701-linked A variant. PLoS One, 7 (7), pp. e40100. | Show Abstract | Read more

A large body of functional and epidemiological evidence have previously illustrated the impact of specific MHC class I subtypes on clinical outcome during HIV-1 infection, and these observations have recently been re-iterated in genome wide association studies (GWAS). Yet because of the complexities surrounding GWAS-based approaches and the lack of knowledge relating to the identity of rarer single nucleotide polymorphism (SNP) variants, it has proved difficult to discover independent causal variants associated with favourable immune control. This is especially true of the candidate variants within the HLA region where many of the recently proposed disease influencing SNPs appear to reflect linkage with 'protective' MHC class I alleles. Yet causal MHC-linked SNPs may exist but remain overlooked owing to the complexities associated with their identification. Here we focus on the ancestral TNFα promoter -237A variant (rs361525), shown historically to be in complete linkage disequilibrium with the 'protective' HLA-B*5701 allele. Many of the ancestral SNPs within the extended TNFα promoter have been associated with both autoimmune conditions and disease outcomes, however, the direct role of these variants on TNFα expression remains controversial. Yet, because of the important role played by TNFα in HIV-1 infection, and given the proximity of the -237 SNP to the core promoter, its location within a putative repressor region previously characterized in mice, and its disruption of a methylation-susceptible CpG dinucleotide motif, we chose to carefully evaluate its impact on TNFα production. Using a variety of approaches we now demonstrate that carriage of the A SNP is associated with lower TNFα production, via a mechanism not readily explained by promoter methylation nor the binding of transcription factors or repressors. We propose that the -237A variant could represent a minor causal SNP that additionally contributes to the HLA-B*5701-mediated 'protective' effect during HIV-1 infection.

Brackenridge S, Evans EJ, Toebes M, Goonetilleke N, Liu MKP, di Gleria K, Schumacher TN, Davis SJ, McMichael AJ, Gillespie GM. 2011. An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol, 85 (11), pp. 5415-5422. | Show Abstract | Read more

Mutations within MHC class I-restricted epitopes have been studied in relation to T cell-mediated immune escape, but their impact on NK cells via interaction with killer Ig-like receptors (KIRs) during early HIV infection is poorly understood. In two patients acutely infected with HIV-1, we observed the appearance of a mutation within the B*57-restricted TW10 epitope (G9E) that did not facilitate strong escape from T cell recognition. The NK cell receptor KIR3DL1, carried by these patients, is known to recognize HLA-B*5703 and is associated with good control of HIV-1. Therefore, we tested whether the G9E mutation influenced the binding of HLA-B*5703 to soluble KIR3DL1 protein by surface plasmon resonance, and while the wild-type sequence and a second (T3N) variant were recognized, the G9E variant abrogated KIR3DL1 binding. We extended the study to determine the peptide sensitivity of KIR3DL1 interaction with epitopes carrying mutations near the C termini of TW10 and a second HLA-B*57-restricted epitope, IW9. Several amino acid changes interfered with KIR3DL1 binding, the most extreme of which included the G9E mutation commonly selected by HLA-B*57. Our results imply that during HIV-1 infection, some early-emerging variants could affect KIR-HLA interaction, with possible implications for immune recognition.

Gillespie GMA, Bashirova A, Dong T, McVicar DW, Rowland-Jones SL, Carrington M. 2007. Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T cell epitopes. AIDS Res Hum Retroviruses, 23 (3), pp. 451-455. | Show Abstract | Read more

In HIV-1 infection, the synergistic association of a subset of Bw4 MHC class I molecules and the activating killer inhibitory receptor (KIR), KIR3DS1, with prolonged AIDS-free survival has been reported. As KIRs represent a diverse group of MHC class I receptors, we questioned whether Bw4 MHC class I molecules expressing isoleucine at position 80 (Bw4Ile80) and in complex with HIV-1-derived T cell epitopes represented KIR3DS1 ligands. MHC class I tetramers are powerful tools for the detection of T cell receptor-MHC class I interactions, and have recently been used to evaluate KIR-MHC class I binding ex vivo. Specifically, this approach has been successfully utilized to assess binding of Bw4 MHC class I tetramers to KIR3DL1, an inhibitory KIR and allele of KIR3DS1. In this study we generated a diverse panel of HIV-1-specific Bw4Ile80 MHC class I tetramers and tested its ability to bind transiently expressed KIR3DS1 on 293-T cells. Using flow cytometry analysis, the expression of KIR3DS1 on 293-T cells was confirmed by anti-FLAG BioM2 staining, prior to incubation with PE-conjugated MHC class I tetramers. Despite choosing a broad array of peptide epitopes and diverse Bw4Ile80 MHC class I molecules, we were unable to detect tetramer binding to KIR3DS1. We speculate that our negative finding may be a consequence of the MHC class I molecules and peptide epitopes chosen, but could also relate to key amino acid differences that distinguish KIR3DS1 from KIR3DL1.

Gillespie GMA, Stewart-Jones G, Rengasamy J, Beattie T, Bwayo JJ, Plummer FA, Kaul R, McMichael AJ, Easterbrook P, Dong T et al. 2006. Strong TCR conservation and altered T cell cross-reactivity characterize a B*57-restricted immune response in HIV-1 infection. J Immunol, 177 (6), pp. 3893-3902. | Show Abstract | Read more

HLA-B*57 is associated with slower disease progression to AIDS, and CD8+ T cell responses to B*57-restricted epitopes are thought to contribute to this protective effect. In this study, we evaluate the B*57-restricted p24 KAFSPEVIPMF (KF11) immune response which is immunodominant during chronic infection. Previously, we observed that the KF11 clade variants KGFNPEVIPMF [A2G,S4N] and KAFNPEIIMPF [S4N,V7I], sharing a position 4 mutation, are differentially recognized by KF11-specific T cells. By combining structural and cellular studies, we now demonstrate that the KF11 and [A2G,S4N] epitopes induce distinct functional responses in [A2G,S4N] and KF11-specific T cells, respectively, despite minimal structural differences between the individual B*57-peptide complexes. Recently, we also elucidated the highly distinct structure of KF11 in complex with B*5703, and have now characterized the CD8+ T cell repertoire recognizing this epitope. We now report striking features of TCR conservation both in terms of TCR Valpha and Vbeta chain usage, and throughout the hypervariable region. Collectively, our findings highlight unusual features of the B*5701/B*5703-KF11-specific immune responses which could influence disease progression and that might be important to consider when designing future vaccine regimens.

Gillespie GMA, Pinheiro S, Sayeid-Al-Jamee M, Alabi A, Kaye S, Sabally S, Sarge-Njie R, Njai H, Joof K, Jaye A et al. 2005. CD8+ T cell responses to human immunodeficiency viruses type 2 (HIV-2) and type 1 (HIV-1) gag proteins are distinguishable by magnitude and breadth but not cellular phenotype. Eur J Immunol, 35 (5), pp. 1445-1453. | Show Abstract | Read more

The mechanisms underlying the relatively slow progression of human immunodeficiency virus type 2 (HIV-2) compared with HIV-1 infection are undefined and could be a result of more effective immune responses. We used HIV-2 and HIV-1 IFN-gamma enzyme-linked immunospot assays to evaluate CD8(+) T cell responses in antiretroviral-naive HIV-2- ('HIV-2(+)') and HIV-1-infected ('HIV-1(+)') individuals. Gag-specific responses were detected in the majority of HIV-2(+) and HIV-1(+) subjects. Overlapping gag peptide analysis indicated a significantly greater magnitude and breadth of responses in the HIV-1(+) cohort, and this difference was attributable to low responses in HIV-2(+) subjects with undetectable viral load (medians 2107 and 512 spot-forming units per 10(6) PBMC, respectively, p=0.007). We investigated the phenotype of viral epitope-specific CD8(+) T cells identified with HLA-B53- and HLA-B58-peptide tetramers (8 HIV-2(+), 11 HIV-1(+) subjects). HIV-2-specific CD8(+) T cells were predominantly CD27(+) CD45RA(-), and only a minority expressed perforin. The limited breadth and low frequency of CD8(+) T cell responses to HIV-2 gag in aviremic HIV-2(+) subjects suggests that these responses reflect antigen load in plasma, as is the case in HIV-1 infection. Immune control of HIV-2 does not appear to be related to the frequency of perforin-expressing virus-specific CD8(+) T cells.

Gillespie GMA, Kaul R, Dong T, Yang H-B, Rostron T, Bwayo JJ, Kiama P, Peto T, Plummer FA, McMichael AJ, Rowland-Jones SL. 2002. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57. AIDS, 16 (7), pp. 961-972. | Show Abstract | Read more

OBJECTIVES: To determine whether CD8 T lymphocytes from HIV-1-infected patients expressing B*5701 and B*5703 show broad cross-reactivity against different variants of a conserved p24 epitope, which might account for the good prognosis of HIV-1-infected individuals with HLA-B*57. DESIGN: B*5701+ and B*5703+ were recruited from Nairobi, Kenya and from Oxford, UK. All patients had been HIV positive for at least 8 years and could be categorized as slow progressors. METHODS: CD8 cytotoxic T cell clones were generated from B*5701+ and B*5703+ donors and tested for their ability to recognize clade variants of an index p24 epitope in standard cytolytic assays. Cross-reactive responses in freshly isolated peripheral blood mononuclear cells (PBMC) were assessed by interferon-gamma (IFNgamma) production and tetramer binding. RESULTS: Broad cross-clade reactivity for both cytolysis and tetramer binding was observed in CD8 T cell clones from patients harbouring the index epitope sequence. Patterns of cross-reactivity were similar in freshly isolated PBMC but varied between individuals in terms of strength and breath of responses generated. One common variant induced an unusual response with tetramer binding but often failed to induce IFNgamma production, and another was a weak stimulator of both IFNgamma and cytolytic activity. CONCLUSION: B*5701+ and B5703+ donors demonstrate broad functional cross-reactivity to both common and rare variants of a dominant p24 epitope, which could be relevant to the association of B*57 alleles with slow progression to AIDS.

Gillespie G, Mutis T, Schrama E, Kamp J, Esendam B, Falkenburg JF, Goulmy E, Moss P. 2000. HLA class I-minor histocompatibility antigen tetramers select cytotoxic T cells with high avidity to the natural ligand. Hematol J, 1 (6), pp. 403-410. | Show Abstract | Read more

INTRODUCTION: Cytotoxic T cells specific for the hematopoietic system-restricted minor histocompatibility antigens HA-1 and HA-2 are potential tools for the treatment of relapsed leukemia after minor histocompatibility antigen mismatched bone marrow transplantation. HA-1/HA-2-specific cytotoxic T cells with strong cytotoxic activity against HA-1/HA-2 positive target cells can be generated in vitro using HA-1 and HA-2 peptide-pulsed dendritic cells as antigen presenting cells. MATERIAL AND METHODS: We used HLA-A2 HA-1/HA-2 tetramers (HA-1(A2)/HA-2(A2) tetramers) to monitor the in vitro generation of HA-1- or HA-2-specific cytotoxic T cells. RESULTS: We show that the intensity of the tetramer-staining of the HA-1/HA-2-specific cytotoxic T cells strongly correlates with their capability to recognize mHag positive target cells. The bright tetramer-staining cytotoxic T cells lyse target cells expressing the natural ligand. The dim tetramer-staining cytotoxic T cells fail to lyse natural ligand positive target cells and lyse peptide-pulsed target cells only. The frequency of bright tetramer-staining, high avidity minor histocompatibility antigen-specific CTLs increases significantly upon appropriate antigen-specific restimulations. CONCLUSION: Our results demonstrate that HLA class I-minor histocompatibility antigen tetramers are useful tools for monitoring and selection of high avidity HA-1- and HA-2-specific cytotoxic T cells for adoptive immunotherapy.

Cited:

144

European Pubmed Central

Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E. 1999. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med, 5 (7), pp. 839-842. | Show Abstract | Read more

Graft-versus-host disease (GvHD) is a chief complication of allogeneic bone marrow transplantation. In HLA-identical bone marrow transplantation, GvHD may be induced by disparities in minor histocompatibility antigens (mHags) between the donor and the recipient, with the antigen being present in the recipient and not in the donor. Cytotoxic T lymphocytes (CTLs) specific for mHags of the recipients can be isolated from the blood of recipients with severe GvHD (ref. 3). A retrospective study demonstrated an association between mismatch for mHags HA-1, -2, -4 and -5 and the occurrence of GvHD in adult recipients of bone marrow from HLA genotypically identical donors. Tetrameric HLA-peptide complexes have been used to visualize and quantitate antigen-specific CTLs in HIV-infected individuals and during Epstein-Barr virus and lymphocytic choriomeningitis virus infections. Here we show the direct ex vivo visualization of mHag-specific CTLs during GvHD using tetrameric HLA-class and I-mHag HA-1 and HY peptide complexes. In the peripheral blood of 17 HA-1 or HY mismatched marrow recipients, HA-1- and HY-specific CTLs were detected as early as 14 days after bone marrow transplantation. The tetrameric complexes demonstrated a significant increase in HA-1- and HY-specific CTLs during acute and chronic GvHD, which decreased after successful GvHD treatment. HLA class I-mHag peptide tetramers may serve as clinical tools for the diagnosis and monitoring of GvHD patients.

Cited:

40

European Pubmed Central

Moss P, Gillespie G, Frodsham P, Bell J, Reyburn H. 1996. Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood, 87 (8), pp. 3297-3306. | Show Abstract

Patients with paraproteinemia have abnormalities in their T-cell subsets including inversion of the CD4:CD8 ratio and increased expression of activation markers. Recently, distortions in T-cell receptor (TCR) TCRAV and TCRBV gene segment expression have been reported, although the significance of these observations is unclear given the finding of clonal populations of CD8+ T cells in healthy elderly individuals. We have used an extensive range of TCR V-region-specific monoclonal antibodies to assess TCRAV and TCRBV expression in patients with myeloma and paraproteinemia. TCR sequence analysis was used to assess the clonality of expansions and 3-color fluorescence-activated cell sorting analysis determined the phenotype of the expanded populations. The patients show novel oligoclonal expansions within the CD4+ subset and show an increased frequency of CD8+ expansions. Oligoclonal CD4+ T cells belong to the rare CD4+CD28- T-cell subset, a phenotype associated with granular morphology. CD45RA and CD11b are expressed on many of the CD8 T-cell expansions. Comparison of T-cell receptor sequences from two T-cell clones in one patient suggests a possible role for a common peptide antigen in the generation of the expansions. Further work is needed to identify the relevance of such T cells to the B-cell proliferation.

Design of a HIV vaccine to stimulate protective HLA-E-restricted T cell responses

There is still an urgent global need for a prophylactic HIV vaccine. Although efforts to develop a vaccine for the last 30 years have proved unsuccessful, recent advances now make this goal an achievable prospect. It has been shown, by our American collaborator Louis Picker, that a recombinant cytomegalovirus (CMV) vaccine can enable more than 50% of vaccinated monkeys to eradicate Simian Immunodeficiency Virus (SIV) infection early after challenge (1). This is unprecedented and, if it could be ...

View project

110

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk