register interest

Professor James H Naismith

Research Area: Protein Science and Structural Biology
Scientific Themes: Protein Science & Structural Biology and Immunology & Infectious Disease

My lab's principal interests are

1 Membrane proteins: most particularly those in bacteria involved in sugar polymer assembly.

2  Biosynthesis of novel natural products

There are no collaborations listed for this principal investigator.

Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, Davin-Regli A, Ceccarelli M, van den Berg B, Winterhalter M, Pagès J-M. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria Nature Reviews Microbiology, | Read more

Gao S, Liu H, de Crécy-Lagard V, Zhu W, Richards NGJ, Naismith JH. 2019. PMP-diketopiperazine adducts form at the active site of a PLP dependent enzyme involved in formycin biosynthesis. Chem Commun (Camb), 55 (96), pp. 14502-14505. | Show Abstract | Read more

ForI is a PLP-dependent enzyme from the biosynthetic pathway of the C-nucleoside antibiotic formycin. Cycloserine is thought to inhibit PLP-dependent enzymes by irreversibly forming a PMP-isoxazole. We now report that ForI forms novel PMP-diketopiperazine derivatives following incubation with both d and l cycloserine. This unexpected result suggests chemical diversity in the chemistry of cycloserine inhibition.

Gkotsi DS, Ludewig H, Sharma SV, Connolly JA, Dhaliwal J, Wang Y, Unsworth WP, Taylor RJK, McLachlan MMW, Shanahan S et al. 2019. A marine viral halogenase that iodinates diverse substrates. Nat Chem, | Show Abstract | Read more

Oceanic cyanobacteria are the most abundant oxygen-generating phototrophs on our planet and are therefore important to life. These organisms are infected by viruses called cyanophages, which have recently shown to encode metabolic genes that modulate host photosynthesis, phosphorus cycling and nucleotide metabolism. Herein we report the characterization of a wild-type flavin-dependent viral halogenase (VirX1) from a cyanophage. Notably, halogenases have been previously associated with secondary metabolism, tailoring natural products. Exploration of this viral halogenase reveals it capable of regioselective halogenation of a diverse range of substrates with a preference for forming aryl iodide species; this has potential implications for the metabolism of the infected host. Until recently, a flavin-dependent halogenase that is capable of iodination in vitro had not been reported. VirX1 is interesting from a biocatalytic perspective as it shows strikingly broad substrate flexibility and a clear preference for iodination, as illustrated by kinetic analysis. These factors together render it an attractive tool for synthesis.

Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, Naismith JH. 2019. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun, 10 (1), pp. 3673. | Show Abstract | Read more

Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.

Yang T, Zhang J, Ke D, Yang W, Tang M, Jiang J, Cheng G, Li J, Cheng W, Wei Y et al. 2019. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nat Commun, 10 (1), pp. 3214. | Show Abstract | Read more

Diets high in sugar are recognized as a serious health problem, and there is a drive to reduce their consumption. Steviol glycosides are natural zero-calorie sweeteners, but the most desirable ones are biosynthesized with low yields. UGT76G1 catalyzes the β (1-3) addition of glucose to steviol glycosides, which gives them the preferred taste. UGT76G1 is able to transfer glucose to multiple steviol substrates yet remains highly specific in the glycosidic linkage it creates. Here, we report multiple complex structures of the enzyme combined with biochemical data, which reveal that the enzyme utilizes hydrophobic interactions for substrate recognition. The lack of a strict three-dimensional recognition arrangement, typical of hydrogen bonds, permits two different orientations for β (1-3) sugar addition. The use of hydrophobic recognition is unusual in a regio- and stereo-specific catalysis. Harnessing such non-specific hydrophobic interactions could have wide applications in the synthesis of complex glycoconjugates.

Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. 2019. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme. Biochemistry, 58 (16), pp. 2125-2132. | Show Abstract | Read more

Cyanobactin heterocyclases share the same catalytic domain (YcaO) as heterocyclases/cyclodehydratases from other ribosomal peptide (RiPPs) biosynthetic pathways. These enzymes process multiple residues (Cys/Thr/Ser) within the same substrate. The processing of cysteine residues proceeds with a known order. We show the order of reaction for threonines is different and depends in part on a leader peptide within the substrate. In contrast to other YcaO domains, which have been reported to exclusively break down ATP into ADP and inorganic phosphate, cyanobactin heterocyclases have been observed to produce AMP and inorganic pyrophosphate during catalysis. We dissect the nucleotide profiles associated with heterocyclization and propose a unifying mechanism, where the γ-phosphate of ATP is transferred in a kinase mechanism to the substrate to yield a phosphorylated intermediate common to all YcaO domains. In cyanobactin heterocyclases, this phosphorylated intermediate, in a proportion of turnovers, reacts with ADP to yield AMP and pyrophosphate.

Harrison PJ, Gable K, Somashekarappa N, Kelly V, Clarke DJ, Naismith JH, Dunn TM, Campopiano DJ. 2019. Use of isotopically labeled substrates reveals kinetic differences between human and bacterial serine palmitoyltransferase. J Lipid Res, 60 (5), pp. 953-962. | Show Abstract | Read more

Isotope labels are frequently used tools to track metabolites through complex biochemical pathways and to discern the mechanisms of enzyme-catalyzed reactions. Isotopically labeled l-serine is often used to monitor the activity of the first enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT), as well as labeling downstream cellular metabolites. Intrigued by the effect that isotope labels may be having on SPT catalysis, we characterized the impact of different l-serine isotopologues on the catalytic activity of recombinant SPT isozymes from humans and the bacterium Sphingomonas paucimobilis Our data show that S. paucimobilis SPT activity displays a clear isotope effect with [2,3,3-D]l-serine, whereas the human SPT isoform does not. This suggests that although both human and S. paucimobilis SPT catalyze the same chemical reaction, there may well be underlying subtle differences in their catalytic mechanisms. Our results suggest that it is the activating small subunits of human SPT that play a key role in these mechanistic variations. This study also highlights that it is important to consider the type and location of isotope labels on a substrate when they are to be used in in vitro and in vivo studies.

Scorciapino MA, Malloci G, Serra I, Milenkovic S, Moynié L, Naismith JH, Desarbre E, Page MGP, Ceccarelli M. 2019. Complexes formed by the siderophore-based monosulfactam antibiotic BAL30072 and their interaction with the outer membrane receptor PiuA of P. aeruginosa. Biometals, 32 (1), pp. 155-170. | Show Abstract | Read more

Nuclear magnetic resonance and infrared spectroscopy have been used to investigate the formation of complexes of BAL30072 with Fe3+ and Ga3+ in solution and to collect geometrical parameters supporting reliable 3D structure models. Structural models for the ligand-metal complexes with different stoichiometries have been characterized using density functional theory calculations. Blind ensemble docking to the PiuA receptor from P. aeruginosa was performed for the different complexes to compare binding affinities and statistics of the residues most frequently contacted. When compared to analogues, BAL30072 was found to have an intrinsic propensity to form complexes with low ligand-to-metal stoichiometry. By using one of the sulfate oxygen atoms as a third donor in addition to the bidentate pyridinone moiety, BAL30072 can form a L2M complex, which was predicted to be the one with the best binding affinity to PiuA. The example of BAL30072 strongly suggests that a lower stoichiometry might be the one recognized by the receptor, so that to focus only on the highest stoichiometry might be misleading for siderophores with less than six donors.

Moynié L, Serra I, Scorciapino MA, Oueis E, Page MG, Ceccarelli M, Naismith JH. 2018. Preacinetobactin not acinetobactin is essential for iron uptake by the BauA transporter of the pathogen Acinetobacter baumannii. Elife, 7 | Show Abstract | Read more

New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention, but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer-membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein, thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions, a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron-preacinetobactin-acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.

Gao S, Ge Y, Bent AF, Schwarz-Linek U, Naismith JH. 2018. Oxidation of the Cyanobactin Precursor Peptide Is Independent of the Leader Peptide and Operates in a Defined Order. Biochemistry, 57 (41), pp. 5996-6002. | Show Abstract | Read more

The five-membered nitrogen plus heteroatom rings known as azolines or in their oxidized form as azoles are very common in natural products and drugs. The oxidation of thiazoline to thiazole in the cyanobactin class of natural products is one of the several important transformations that are known to alter the biological properties of the compound. The ordering of the various chemical reactions that occur during cyanobactin biosynthesis is not fully understood. The structure of the flavin-dependent enzyme responsible for the oxidation of multiple thiazolines reveals it contains an additional domain that in other enzymes recognizes linear peptides. We characterize the activity of the enzyme on two substrates: one with a peptide leader and one without. Kinetics and biophysics reveal that the leader on the substrate is not recognized by the enzyme. The enzyme is faster on either substrate than the macrocyclase or protease in vitro. The enzyme has a preferred order of oxidation of multiple thiazolines in the same linear peptide.

Perraud Q, Moynié L, Gasser V, Munier M, Godet J, Hoegy F, Mély Y, Mislin GLA, Naismith JH, Schalk IJ. 2018. A Key Role for the Periplasmic PfeE Esterase in Iron Acquisition via the Siderophore Enterobactin in Pseudomonas aeruginosa. ACS Chem Biol, 13 (9), pp. 2603-2614. | Show Abstract | Read more

Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.

Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, Zahn M, Winterhalter M, Stavenger RA, Pagès J-M et al. 2018. Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins. ACS Infect Dis, 4 (10), pp. 1487-1498. | Show Abstract | Read more

Small, hydrophilic molecules, including most important antibiotics in clinical use, cross the Gram-negative outer membrane through the water-filled channels provided by porins. We have determined the X-ray crystal structures of the principal general porins from three species of Enterobacteriaceae, namely Enterobacter aerogenes, Enterobacter cloacae, and Klebsiella pneumoniae, and determined their antibiotic permeabilities as well as those of the orthologues from Escherichia coli. Starting from the structure of the porins and molecules, we propose a physical mechanism underlying transport and condense it in a computationally efficient scoring function. The scoring function shows good agreement with in vitro penetration data and will enable the screening of virtual databases to identify molecules with optimal permeability through porins and help to guide the optimization of antibiotics with poor permeation.

Song H, van der Velden NS, Shiran SL, Bleiziffer P, Zach C, Sieber R, Imani AS, Krausbeck F, Aebi M, Freeman MF et al. 2018. A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds. Sci Adv, 4 (8), pp. eaat2720. | Show Abstract | Read more

The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.

Alphey MS, Fisher G, Ge Y, Gould ER, Machado TFG, Liu H, Florence GJ, Naismith JH, da Silva RG. 2018. Catalytic and Anticatalytic Snapshots of a Short-Form ATP Phosphoribosyltransferase ACS CATALYSIS, 8 (6), pp. 5601-5610. | Show Abstract | Read more

© 2018 American Chemical Society. Allosteric modulation of catalysis is a common regulatory strategy of flux-controlling biosynthetic enzymes. The enzyme ATP phosphoribosyltransferase (ATPPRT) catalyzes the first reaction in histidine biosynthesis, the magnesium-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate (PPi). ATPPRT is allosterically inhibited by the final product of the pathway, histidine. Hetero-octameric ATPPRT consists of four catalytic subunits (HisGS) and four regulatory subunits (HisZ) engaged in intricate catalytic regulation. HisZ enhances HisGS catalysis in the absence of histidine while mediating allosteric inhibition in its presence. Here we report HisGS structures for the apoenzyme and complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP), product (PRATP), and inhibitor (AMP), along with ATPPRT holoenzyme structures in complexes with substrates (PRPP, PRPP-ATP, PRPP-ADP) and product (PRATP). These 10 crystal structures provide an atomic view of the catalytic cycle and allosteric activation of Psychrobacter arcticus ATPPRT. In both ternary complexes with PRPP-ATP, the adenine ring is found in an anticatalytic orientation, rotated 180° from the catalytic rotamer. Arg32 interacts with phosphate groups of ATP and PRPP, bringing the substrates in proximity for catalysis. The negative charge repulsion is further attenuated by a magnesium ion sandwiched between the α- and β-phosphate groups of both substrates. HisZ binding to form the hetero-octamer brings HisGS subunits closer together in a tighter dimer in the Michaelis complex, which poises Arg56 from the adjacent HisGS molecule for cross-subunit stabilization of the PPi leaving group at the transition state. The more electrostatically preorganized active site of the holoenzyme likely minimizes the reorganization energy required to accommodate the transition state. This provides a structural basis for allosteric activation in which chemistry is accelerated by facilitating leaving group departure.

Liston SD, McMahon SA, Le Bas A, Suits MDL, Naismith JH, Whitfield C. 2018. Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides. Proc Natl Acad Sci U S A, 115 (21), pp. E4870-E4879. | Show Abstract | Read more

Capsules are surface layers of hydrated capsular polysaccharides (CPSs) produced by many bacteria. The human pathogen Salmonella enterica serovar Typhi produces "Vi antigen" CPS, which contributes to virulence. In a conserved strategy used by bacteria with diverse CPS structures, translocation of Vi antigen to the cell surface is driven by an ATP-binding cassette (ABC) transporter. These transporters are engaged in heterooligomeric complexes proposed to form an enclosed translocation conduit to the cell surface, allowing the transporter to power the entire process. We identified Vi antigen biosynthesis genetic loci in genera of the Burkholderiales, which are paradoxically distinguished from S. Typhi by encoding VexL, a predicted pectate lyase homolog. Biochemical analyses demonstrated that VexL is an unusual metal-independent endolyase with an acidic pH optimum that is specific for O-acetylated Vi antigen. A 1.22-Å crystal structure of the VexL-Vi antigen complex revealed features which distinguish common secreted catabolic pectate lyases from periplasmic VexL, which participates in cell-surface assembly. VexL possesses a right-handed parallel β-superhelix, of which one face forms an electropositive glycan-binding groove with an extensive hydrogen bonding network that includes Vi antigen acetyl groups and confers substrate specificity. VexL provided a probe to interrogate conserved features of the ABC transporter-dependent export model. When introduced into S Typhi, VexL localized to the periplasm and degraded Vi antigen. In contrast, a cytosolic derivative had no effect unless export was disrupted. These data provide evidence that CPS assembled in ABC transporter-dependent systems is actually exposed to the periplasm during envelope translocation.

Ronan JL, Kadi N, McMahon SA, Naismith JH, Alkhalaf LM, Challis GL. 2018. Desferrioxamine biosynthesis: diverse hydroxamate assembly by substrate-tolerant acyl transferase DesC. Philos Trans R Soc Lond B Biol Sci, 373 (1748), pp. 20170068-20170068. | Show Abstract | Read more

Hydroxamate groups play key roles in the biological function of diverse natural products. Important examples include trichostatin A, which inhibits histone deacetylases via coordination of the active site zinc(II) ion with a hydroxamate group, and the desferrioxamines, which use three hydroxamate groups to chelate ferric iron. Desferrioxamine biosynthesis in Streptomyces species involves the DesD-catalysed condensation of various N-acylated derivatives of N-hydroxycadaverine with two molecules of N-succinyl-N-hydroxycadaverine to form a range of linear and macrocyclic tris-hydroxamates. However, the mechanism for assembly of the various N-acyl-N-hydroxycadaverine substrates of DesD from N-hydroxycadaverine has until now been unclear. Here we show that the desC gene of Streptomyces coelicolor encodes the acyl transferase responsible for this process. DesC catalyses the N-acylation of N-hydroxycadaverine with acetyl, succinyl and myristoyl-CoA, accounting for the diverse array of desferrioxamines produced by S. coelicolor The X-ray crystal structure of DesE, the ferrioxamine lipoprotein receptor, in complex with ferrioxamine B (which is derived from two units of N-succinyl-N-hydroxycadaverine and one of N-acetyl-N-hydroxycadaverine) was also determined. This showed that the acetyl group of ferrioxamine B is solvent exposed, suggesting that the corresponding acyl group in longer chain congeners can protrude from the binding pocket, providing insights into their likely function. This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.

Czekster CM, Naismith JH. 2017. Kinetic Landscape of a Peptide Bond-Forming Prolyl Oligopeptidase. Biochemistry, 56 (15), pp. 2086-2095. | Show Abstract | Read more

Prolyl oligopeptidase B from Galerina marginata (GmPOPB) has recently been discovered as a peptidase capable of breaking and forming peptide bonds to yield a cyclic peptide. Despite the relevance of prolyl oligopeptidases in human biology and disease, a kinetic analysis pinpointing rate-limiting steps for a member of this enzyme family is not available. Macrocyclase enzymes are currently exploited to produce cyclic peptides with potential therapeutic applications. Cyclic peptides are promising druglike molecules because of their stability and conformational rigidity. Here we describe an in-depth kinetic characterization of a prolyl oligopeptidase acting as a macrocyclase enzyme. By combining steady-state and pre-steady-state kinetics, we propose a kinetic sequence in which a step after macrocyclization limits steady-state turnover. Additionally, product release is ordered, where the cyclic peptide departs first followed by the peptide tail. Dissociation of the peptide tail is slow and significantly contributes to the turnover rate. Furthermore, trapping of the enzyme by the peptide tail becomes significant beyond initial rate conditions. The presence of a burst of product formation and a large viscosity effect further support the rate-limiting nature of a physical step occurring after macrocyclization. This is the first detailed description of the kinetic sequence of a macrocyclase enzyme from this class. GmPOPB is among the fastest macrocyclases described to date, and this work is a necessary step toward designing broad-specificity efficient macrocyclases.

Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, Köhler T. 2018. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob Agents Chemother, 62 (6), | Show Abstract | Read more

The conjugation of siderophores to antimicrobial molecules is an attractive strategy to overcome the low outer membrane permeability of Gram-negative bacteria. In this Trojan horse approach, the transport of drug conjugates is redirected via TonB-dependent receptors (TBDR), which are involved in the uptake of essential nutrients, including iron. Previous reports have demonstrated the involvement of the TBDRs PiuA and PirA from Pseudomonas aeruginosa and their orthologues in Acinetobacter baumannii in the uptake of siderophore-beta-lactam drug conjugates. By in silico screening, we further identified a PiuA orthologue, termed PiuD, present in clinical isolates, including strain LESB58. The piuD gene in LESB58 is located at the same genetic locus as piuA in strain PAO1. PiuD has a similar crystal structure as PiuA and is involved in the transport of the siderophore-drug conjugates BAL30072, MC-1, and cefiderocol in strain LESB58. To screen for additional siderophore-drug uptake systems, we overexpressed 28 of the 34 TBDRs of strain PAO1 and identified PfuA, OptE, OptJ, and the pyochelin receptor FptA as novel TBDRs conferring increased susceptibility to siderophore-drug conjugates. The existence of a TBDR repertoire in P. aeruginosa able to transport siderophore-drug molecules potentially decreases the likelihood of resistance emergence during therapy.

Ludewig H, Czekster CM, Oueis E, Munday ES, Arshad M, Synowsky SA, Bent AF, Naismith JH. 2018. Characterization of the Fast and Promiscuous Macrocyclase from Plant PCY1 Enables the Use of Simple Substrates. ACS Chem Biol, 13 (3), pp. 801-811. | Show Abstract | Read more

Cyclic ribosomally derived peptides possess diverse bioactivities and are currently of major interest in drug development. However, it can be chemically challenging to synthesize these molecules, hindering the diversification and testing of cyclic peptide leads. Enzymes used in vitro offer a solution to this; however peptide macrocyclization remains the bottleneck. PCY1, involved in the biosynthesis of plant orbitides, belongs to the class of prolyl oligopeptidases and natively displays substrate promiscuity. PCY1 is a promising candidate for in vitro utilization, but its substrates require an 11 to 16 residue C-terminal recognition tail. We have characterized PCY1 both kinetically and structurally with multiple substrate complexes revealing the molecular basis of recognition and catalysis. Using these insights, we have identified a three residue C-terminal extension that replaces the natural recognition tail permitting PCY1 to operate on synthetic substrates. We demonstrate that PCY1 can macrocyclize a variety of substrates with this short tail, including unnatural amino acids and nonamino acids, highlighting PCY1's potential in biocatalysis.

Ojo OS, Nardone B, Musolino SF, Neal AR, Wilson L, Lebl T, Slawin AMZ, Cordes DB, Taylor JE, Naismith JH et al. 2018. Synthesis of the natural product descurainolide and cyclic peptides from lignin-derived aromatics. Org Biomol Chem, 16 (2), pp. 266-273. | Show Abstract | Read more

Alternative sources of potential feedstock chemicals are of increasing importance as the availability of oil decreases. The biopolymer lignin is viewed as a source of useful mono-aromatic compounds as exemplified by the industrial scale production of vanillin from this biomass. Alternative lignin-derived aromatics are available in pure form but to date examples of the use of these types of compounds are rare. Here we address this issue by reporting the conversion of an aromatic keto-alcohol to the anti- and syn-isomers of Descurainolide A. The key step involves a rhodium-catalyzed allylic substitution reaction. Enantio-enriched allylic alcohols were generated via an isothiourea-catalyzed kinetic resolution enabling access to both the (2R,3R) and (2S,3S) enantiomers of anti-Descurainolide A. In addition we show that the lignin-derived keto-alcohols can be converted into unnatural amino acid derivatives of tyrosine. Finally, these amino acids were incorporated into cyclic peptide scaffolds through the use of both chemical and an enzyme-mediated macrocylisation.

Ackermann K, Pliotas C, Valera S, Naismith JH, Bode BE. 2017. Sparse Labeling PELDOR Spectroscopy on Multimeric Mechanosensitive Membrane Channels. Biophys J, 113 (9), pp. 1968-1978. | Show Abstract | Read more

Pulse electron paramagnetic resonance (EPR) is being applied to ever more complex biological systems comprising multiple subunits. Membrane channel proteins are of great interest as pulse EPR reports on functionally significant but distinct conformational states in a native environment without the need for crystallization. Pulse EPR, in the form of pulsed electron-electron double resonance (PELDOR), using site-directed spin labeling, is most commonly employed to accurately determine distances (in the nanometer range) between different regions of the structure. However, PELDOR data analysis is more challenging in systems containing more than two spins (e.g., homomultimers) due to distorting multispin effects. Without suppression of these effects, much of the information contained in PELDOR data cannot be reliably retrieved. Thus, it is of utmost importance for future PELDOR applications in structural biology to develop suitable approaches that can overcome the multispin problem. Here, two different approaches for suppressing multispin effects in PELDOR, sparse labeling of the protein (reducing the labeling efficiency f) and reducing the excitation probability of spins (λ), are compared on two distinct bacterial mechanosensitive channels. For both the pentameric channel of large conductance (MscL) and the heptameric channel of small conductance (MscS) of Escherichia coli, mutants containing a spin label in the cytosolic or the transmembrane region were tested. Data demonstrate that distance distributions can be significantly improved with either approach compared to the standard PELDOR measurement, and confirm that λ < 1/(n-1) is needed to sufficiently suppress multispin effects (with n being the number of spins in the system). A clear advantage of the sparse labeling approach is demonstrated for the cytosolic mutants due to a significantly smaller loss in sensitivity. For the transmembrane mutants, this advantage is less pronounced but still useful for MscS, but performance is inferior for MscL possibly due to structural perturbations by the bulkier diamagnetic spin label analog.

Oueis E, Stevenson H, Jaspars M, Westwood NJ, Naismith JH. 2017. Bypassing the proline/thiazoline requirement of the macrocyclase PatG. Chem Commun (Camb), 53 (91), pp. 12274-12277. | Show Abstract | Read more

Biocatalysis is a fast developing field in which an enzyme's natural capabilities are harnessed or engineered for synthetic chemistry. The enzyme PatG is an extremely promiscuous macrocyclase enzyme tolerating both non-natural amino acids and non-amino acids within the substrate. It does, however, require a proline or thiazoline at the C-terminal position of the core peptide which means the final product must contain this group. Here, we show guided by structural insight we have identified two synthetic routes, triazole and a double cysteine, that circumvent this requirement. With the triazole, we show PatGmac can macrocyclise substrates that do not contain any amino acids in the final product.

Czekster CM, Ludewig H, McMahon SA, Naismith JH. 2017. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat Commun, 8 (1), pp. 1045. | Show Abstract | Read more

Peptide macrocycles are promising therapeutic molecules because they are protease resistant, structurally rigid, membrane permeable, and capable of modulating protein-protein interactions. Here, we report the characterization of the dual function macrocyclase-peptidase enzyme involved in the biosynthesis of the highly toxic amanitin toxin family of macrocycles. The enzyme first removes 10 residues from the N-terminus of a 35-residue substrate. Conformational trapping of the 25 amino-acid peptide forces the enzyme to release this intermediate rather than proceed to macrocyclization. The enzyme rebinds the 25 amino-acid peptide in a different conformation and catalyzes macrocyclization of the N-terminal eight residues. Structures of the enzyme bound to both substrates and biophysical analysis characterize the different binding modes rationalizing the mechanism. Using these insights simpler substrates with only five C-terminal residues were designed, allowing the enzyme to be more effectively exploited in biotechnology.

Pliotas C, Grayer SC, Ekkerman S, Chan AKN, Healy J, Marius P, Bartlett W, Khan A, Cortopassi WA, Chandler SA et al. 2017. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System. Biochemistry, 56 (32), pp. 4219-4234. | Show Abstract | Read more

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

Barski M, Brennan B, Miller OK, Potter JA, Vijayakrishnan S, Bhella D, Naismith JH, Elliott RM, Schwarz-Linek U. 2017. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. Elife, 6 | Show Abstract | Read more

Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

Michailidou F, Chung C-W, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. 2017. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3'-Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl, 56 (41), pp. 12492-12497. | Show Abstract | Read more

The uridyl peptide antibiotics (UPAs), of which pacidamycin is a member, have a clinically unexploited mode of action and an unusual assembly. Perhaps the most striking feature of these molecules is the biosynthetically unique 3'-deoxyuridine that they share. This moiety is generated by an unusual, small and monomeric dehydratase, Pac13, which catalyses the dehydration of uridine-5'-aldehyde. Here we report the structural characterisation of Pac13 with a series of ligands, and gain insight into the enzyme's mechanism demonstrating that H42 is critical to the enzyme's activity and that the reaction is likely to proceed via an E1cB mechanism. The resemblance of the 3'-deoxy pacidamycin moiety with the synthetic anti-retrovirals, presents a potential opportunity for the utilisation of Pac13 in the biocatalytic generation of antiviral compounds.

Carroll CS, Grieve CL, Murugathasan I, Bennet AJ, Czekster CM, Liu H, Naismith J, Moore MM. 2017. The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int J Biochem Cell Biol, 89 pp. 136-146. | Show Abstract | Read more

Iron is essential for growth and in low iron environments such as serum many bacteria and fungi secrete ferric iron-chelating molecules called siderophores. All fungi produce hydroxamate siderophores with the exception of Mucorales fungi, which secrete rhizoferrin, a polycarboxylate siderophore. Here we investigated the biosynthesis of rhizoferrin by the opportunistic human pathogen, Rhizopus delemar. We searched the genome of R. delemar 99-880 for a homologue of the bacterial NRPS-independent siderophore (NIS) protein, SfnaD, that is involved in biosynthesis of staphyloferrin A in Staphylococcus aureus. A protein was identified in R. delemar with 22% identity and 37% similarity with SfnaD, containing an N-terminal IucA/IucC family domain, and a C-terminal conserved ferric iron reductase FhuF-like transporter domain. Expression of the putative fungal rhizoferrin synthetase (rfs) gene was repressed by iron. The rfs gene was cloned and expressed in E.coli and siderophore biosynthesis from citrate and diaminobutane was confirmed using high resolution LC-MS. Substrate specificity was investigated showing that Rfs produced AMP when oxaloacetic acid, tricarballylic acid, ornithine, hydroxylamine, diaminopentane and diaminopropane were employed as substrates. Based on the production of AMP and the presence of a mono-substituted rhizoferrin, we suggest that Rfs is a member of the superfamily of adenylating enzymes. We used site-directed mutagenesis to mutate selected conserved residues predicted to be in the Rfs active site. These studies revealed that H484 is essential for Rfs activity and L544 may play a role in amine recognition by the enzyme. This study on Rfs is the first characterization of a fungal NIS enzyme. Future work will determine if rhizoferrin biosynthesis is required for virulence in Mucorales fungi.

Wang M, Moynié L, Harrison PJ, Kelly V, Piper A, Naismith JH, Campopiano DJ. 2017. Using the pimeloyl-CoA synthetase adenylation fold to synthesize fatty acid thioesters. Nat Chem Biol, 13 (6), pp. 660-667. | Show Abstract | Read more

Biotin is an essential vitamin in plants and mammals, functioning as the carbon dioxide carrier within central lipid metabolism. Bacterial pimeloyl-CoA synthetase (BioW) acts as a highly specific substrate-selection gate, ensuring the integrity of the carbon chain in biotin synthesis. BioW catalyzes the condensation of pimelic acid (C7 dicarboxylic acid) with CoASH in an ATP-dependent manner to form pimeloyl-CoA, the first dedicated biotin building block. Multiple structures of Bacillus subtilis BioW together capture all three substrates, as well as the intermediate pimeloyl-adenylate and product pyrophosphate (PPi), indicating that the enzyme uses an internal ruler to select the correct dicarboxylic acid substrate. Both the catalytic mechanism and the surprising stability of the adenylate intermediate were rationalized through site-directed mutagenesis. Building on this understanding, BioW was engineered to synthesize high-value heptanoyl (C7) and octanoyl (C8) monocarboxylic acid-CoA and C8 dicarboxylic-CoA products, highlighting the enzyme's synthetic potential.

Asadi J, Ferguson S, Raja H, Hacker C, Marius P, Ward R, Pliotas C, Naismith J, Lucocq J. 2017. Enhanced imaging of lipid rich nanoparticles embedded in methylcellulose films for transmission electron microscopy using mixtures of heavy metals. Micron, 99 pp. 40-48. | Show Abstract | Read more

Synthetic and naturally occurring lipid-rich nanoparticles are of wide ranging importance in biomedicine. They include liposomes, bicelles, nanodiscs, exosomes and virus particles. The quantitative study of these particles requires methods for high-resolution visualization of the whole population. One powerful imaging method is cryo-EM of vitrified samples, but this is technically demanding, requires specialized equipment, provides low contrast and does not reveal all particles present in a population. Another approach is classical negative stain-EM, which is more accessible but is difficult to standardize for larger lipidic structures, which are prone to artifacts of structure collapse and contrast variability. A third method uses embedment in methylcellulose films containing uranyl acetate as a contrasting agent. Methylcellulose embedment has been widely used for contrasting and supporting cryosections but only sporadically for visualizing lipid rich vesicular structures such as endosomes and exosomes. Here we present a simple methylcellulose-based method for routine and comprehensive visualization of synthetic lipid rich nanoparticles preparations, such as liposomes, bicelles and nanodiscs. It combines a novel double-staining mixture of uranyl acetate (UA) and tungsten-based electron stains (namely phosphotungstic acid (PTA) or sodium silicotungstate (STA)) with methylcellulose embedment. While the methylcellulose supports the delicate lipid structures during drying, the addition of PTA or STA to UA provides significant enhancement in lipid structure display and contrast as compared to UA alone. This double staining method should aid routine structural evaluation and quantification of lipid rich nanoparticles structures.

Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. 2017. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev, 117 (8), pp. 5389-5456. | Show Abstract | Read more

With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.

Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MGP, Naismith JH, Köhler T. 2017. Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother, 61 (4), | Show Abstract | Read more

The outer membrane of Gram-negative bacteria presents an efficient barrier to the permeation of antimicrobial molecules. One strategy pursued to circumvent this obstacle is to hijack transport systems for essential nutrients, such as iron. BAL30072 and MC-1 are two monobactams conjugated to a dihydroxypyridone siderophore that are active against Pseudomonas aeruginosa and Acinetobacter baumannii Here, we investigated the mechanism of action of these molecules in A. baumannii We identified two novel TonB-dependent receptors, termed Ab-PiuA and Ab-PirA, that are required for the antimicrobial activity of both agents. Deletion of either piuA or pirA in A. baumannii resulted in 4- to 8-fold-decreased susceptibility, while their overexpression in the heterologous host P. aeruginosa increased susceptibility to the two siderophore-drug conjugates by 4- to 32-fold. The crystal structures of PiuA and PirA from A. baumannii and their orthologues from P. aeruginosa were determined. The structures revealed similar architectures; however, structural differences between PirA and PiuA point to potential differences between their cognate siderophore ligands. Spontaneous mutants, selected upon exposure to BAL30072, harbored frameshift mutations in either the ExbD3 or the TonB3 protein of A. baumannii, forming the cytoplasmic-membrane complex providing the energy for the siderophore translocation process. The results of this study provide insight for the rational design of novel siderophore-drug conjugates against problematic Gram-negative pathogens.

Stroek R, Ge Y, Talbot PD, Glok MK, Bernaś KE, Thomson CM, Gould ER, Alphey MS, Liu H, Florence GJ et al. 2017. Kinetics and Structure of a Cold-Adapted Hetero-Octameric ATP Phosphoribosyltransferase. Biochemistry, 56 (5), pp. 793-803. | Show Abstract | Read more

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-β-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.

Parajuli A, Kwak DH, Dalponte L, Leikoski N, Galica T, Umeobika U, Trembleau L, Bent A, Sivonen K, Wahlsten M et al. 2017. Corrigendum: A Unique Tryptophan C-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angew Chem Int Ed Engl, 56 (2), pp. 433. | Show Abstract | Read more

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The following sentences need to be added to the Acknowledgement section of this Communication: “We thank the Industrial Biotechnology Innovation Centre (IBioIC) for funding a doctoral studentship to L.D. U.U. was a recipient of a PhD scholarschip from the Tertiary Education Trust Fund (TETFUND), Nigeria. W.H. was funded by an ERC grant to J.N. and M.J. (NCB-TNT 339367)”.

Oueis E, Nardone B, Jaspars M, Westwood NJ, Naismith JH. 2017. Synthesis of Hybrid Cyclopeptides through Enzymatic Macrocyclization. ChemistryOpen, 6 (1), pp. 11-14. | Show Abstract | Read more

Natural products comprise a diverse array of molecules, many of which are biologically active. Most natural products are derived from combinations of polyketides, peptides, sugars, and fatty-acid building blocks. Peptidic macrocycles have attracted attention as potential therapeutics possessing cell permeability, stability, and easy-to-control variability. Here, we show that enzymes from the patellamide biosynthetic pathway can be harnessed to make macrocycles that are hybrids of amino acids and a variety of manmade chemical building blocks, including aryl rings, polyethers, and alkyl chains. We have made macrocycles with only three amino acids, one of which can be converted to a thiazoline or a thiazole ring. We report the synthesis of 18 peptide hybrid macrocycles, nine of which have been isolated and fully characterized.

Pliotas C, Naismith JH. 2017. Spectator no more, the role of the membrane in regulating ion channel function. Curr Opin Struct Biol, 45 pp. 59-66. | Show Abstract | Read more

A pressure gradient across a curved lipid bilayer leads to a lateral force within the bilayer. Following ground breaking work on eukaryotic ion channels, it is now known that many proteins sense this change in the lateral tension and alter their functions in response. It has been proposed that responding to pressure differentials may be one of the oldest signaling mechanisms in biology. The most well characterized mechanosensing ion channels are the bacterial ones which open when the pressure differential hits a threshold. Recent studies on one of these channels, MscS, have developed a simple molecular model for how they sense and adapt to pressure. Biochemical and structural studies on mechanosensitive channels from eukaryotes have disclosed pressure sensing mechanisms. In this review, we highlight these findings and discuss the potential for a general model for pressure sensing.

Czekster CM, Ge Y, Naismith JH. 2016. Mechanisms of cyanobactin biosynthesis. Curr Opin Chem Biol, 35 pp. 80-88. | Show Abstract | Read more

Cyanobactins are a diverse collection of natural products that originate from short peptides made on a ribosome. The amino acids are modified in a series of transformations catalyzed by multiple enzymes. The patellamide pathway is the most well studied and characterized example. Here we review the structures and mechanisms of the enzymes that cleave peptide bonds, macrocyclise peptides, heterocyclise cysteine (as well as threonine and serine) residues, oxidize five-membered heterocycles and attach prenyl groups. Some enzymes operate by novel mechanisms which is of interest and in addition the enzymes uncouple recognition from catalysis. The normally tight relationship between these factors hinders biotechnology. The cyanobactin pathway may be particularly suitable for exploitation, with progress observed with in vivo and in vitro approaches.

Adaba RI, Mann G, Raab A, Houssen WE, McEwan AR, Thomas L, Tabudravu J, Naismith JH, Jaspars M. 2016. Accurate quantification of modified cyclic peptides without the need for authentic standards TETRAHEDRON, 72 (52), pp. 8603-8609. | Show Abstract | Read more

© 2016 Elsevier Ltd There is a growing interest in the use of cyclic peptides as therapeutics, but their efficient production is often the bottleneck in taking them forward in the development pipeline. We have recently developed a method to synthesise azole-containing cyclic peptides using enzymes derived from different cyanobactin biosynthetic pathways. Accurate quantification is crucial for calculation of the reaction yield and for the downstream biological testing of the products. In this study, we demonstrate the development and validation of two methods to accurately quantify these compounds in the reaction mixture and after purification. The first method involves the use of a HPLC coupled in parallel to an ESMS and an ICP-MS, hence correlating the calculated sulfur content to the amount of cyclic peptide. The second method is an NMR ERETIC method for quantifying the solution concentration of cyclic peptides. These methods make the quantification of new compounds much easier as there is no need for the use of authentic standards when they are not available.

Bent AF, Mann G, Houssen WE, Mykhaylyk V, Duman R, Thomas L, Jaspars M, Wagner A, Naismith JH. 2016. Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD. Acta Crystallogr D Struct Biol, 72 (Pt 11), pp. 1174-1180. | Show Abstract | Read more

Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.

Woodward L, Naismith JH. 2016. Bacterial polysaccharide synthesis and export. Curr Opin Struct Biol, 40 pp. 81-88. | Show Abstract | Read more

All domains of life make carbohydrate polymers and by anchoring them to lipid molecules they can decorate the outside of the cell. Polysaccharides are linked to proteins by glycosylation, a process found in both bacteria and in higher organisms. Bacteria do have other distinct uses for carbohydrate polymers; in gram-negative bacteria glycolipids form the outer leaflet of the outer membrane and in many pathogens (both gram-positive and gram-negative) sugar polymers are used to build a capsule or are secreted into the environment. There are parallels, but of course differences, in the biosynthesis of glycolipids between prokaryotes and eukaryotes, which occur at the membrane. The translocation of large sugar polymers across the outer membrane is unique to gram-negative bacteria. Recent progress in the molecular understanding of both the biosynthesis at the inner membrane and the translocation across the outer membrane are reviewed here.

Ferrara LGM, Wallat GD, Moynié L, Dhanasekar NN, Aliouane S, Acosta-Gutiérrez S, Pagès J-M, Bolla J-M, Winterhalter M, Ceccarelli M, Naismith JH. 2016. MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca2+ Ion Bound at the Constriction Zone. J Mol Biol, 428 (22), pp. 4528-4543. | Show Abstract | Read more

The Gram-negative organism Campylobacter jejuni is the major cause of food poisoning. Unlike Escherichia coli, which has two major porins, OmpC and OmpF, C. jejuni has one, termed major outer membrane protein (MOMP) through which nutrients and antibiotics transit. We report the 2.1-Å crystal structure of C. jejuni MOMP expressed in E. coli and a lower resolution but otherwise identical structure purified directly from C. jejuni. The 2.1-Å resolution structure of recombinant MOMP showed that although the protein has timeric arrangement similar to OmpC, it is an 18-stranded, not 16-stranded, β-barrel. The structure has identified a Ca2+ bound at the constriction zone, which is functionally significant as suggested by molecular dynamics and single-channel experiments. The water-filled channel of MOMP has a narrow constriction zone, and single-molecule studies show a monomeric conductivity of 0.7±0.2 nS and a trimeric conductance of 2.2±0.2 nS. The ion neutralizes negative charges at the constriction zone, reducing the transverse electric field and reversing ion selectivity. Modeling of the transit of ciprofloxacin, an antibiotic of choice for treating Campylobacter infection, through the pore of MOMP reveals a trajectory that is dependent upon the presence metal ion.

Brás NF, Ferreira P, Calixto AR, Jaspars M, Houssen W, Naismith JH, Fernandes PA, Ramos MJ. 2016. The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac. Chemistry, 22 (37), pp. 13089-13097. | Show Abstract | Read more

Cyclic peptides are a class of compounds with high therapeutic potential, possessing bioactivities including antitumor and antiviral (including anti-HIV). Despite their desirability, efficient design and production of these compounds has not been achieved to date. The catalytic mechanism of patellamide macrocyclization by the PatG macrocyclase domain has been computationally investigated by using quantum mechanics/molecular mechanics methodology, specifically ONIOM(M06/6-311++G(2d,2p):ff94//B3LYP/6-31G(d):ff94). The mechanism proposed herein begins with a proton transfer from Ser783 to His 618 and from the latter to Asp548. Nucleophilic attack of Ser783 on the substrate leads to the formation of an acyl-enzyme covalent complex. The leaving group Ala-Tyr-Asp-Gly (AYDG) of the substrate is protonated by the substrate's N terminus, leading to the breakage of the P1-P1' bond. Finally, the substrate's N terminus attacks the P1 residue, decomposing the acyl-enzyme complex forming the macrocycle. The formation and decomposition of the acyl-enzyme complex have the highest activation free energies (21.1 kcal mol(-1) and 19.8 kcal mol(-1) respectively), typical of serine proteases. Understanding the mechanism behind the macrocyclization of patellamides will be important to the application of the enzymes in the pharmaceutical and biotechnological industries.

Yang J, Wang Y, Wang T, Jiang J, Botting CH, Liu H, Chen Q, Yang J, Naismith JH, Zhu X, Chen L. 2016. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun, 7 (1), pp. 12103. | Show Abstract | Read more

Molecules that alter the normal dynamics of microtubule assembly and disassembly include many anticancer drugs in clinical use. So far all such therapeutics target β-tubulin, and structural biology has explained the basis of their action and permitted design of new drugs. However, by shifting the profile of β-tubulin isoforms, cancer cells become resistant to treatment. Compounds that bind to α-tubulin are less well characterized and unexploited. The natural product pironetin is known to bind to α-tubulin and is a potent inhibitor of microtubule polymerization. Previous reports had identified that pironetin reacts with lysine-352 residue however analogues designed on this model had much lower potency, which was difficult to explain, hindering further development. We report crystallographic and mass spectrometric data that reveal that pironetin forms a covalent bond to cysteine-316 in α-tubulin via a Michael addition reaction. These data provide a basis for the rational design of α-tubulin targeting chemotherapeutics.

Hacker C, Asadi J, Pliotas C, Ferguson S, Sherry L, Marius P, Tello J, Jackson D, Naismith J, Lucocq JM. 2016. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy. Sci Rep, 6 (1), pp. 25275. | Show Abstract | Read more

Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.

Constantinescu-Aruxandei D, Petrovic-Stojanovska B, Penedo JC, White MF, Naismith JH. 2016. Mechanism of DNA loading by the DNA repair helicase XPD. Nucleic Acids Res, 44 (6), pp. 2806-2815. | Show Abstract | Read more

The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5' to 3' helicase with an essential iron-sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.

Oueis E, Jaspars M, Westwood NJ, Naismith JH. 2016. Enzymatic Macrocyclization of 1,2,3-Triazole Peptide Mimetics. Angew Chem Int Ed Engl, 55 (19), pp. 5842-5845. | Show Abstract | Read more

The macrocyclization of linear peptides is very often accompanied by significant improvements in their stability and biological activity. Many strategies are available for their chemical macrocyclization, however, enzyme-mediated methods remain of great interest in terms of synthetic utility. To date, known macrocyclization enzymes have been shown to be active on both peptide and protein substrates. Here we show that the macrocyclization enzyme of the cyanobactin family, PatGmac, is capable of macrocyclizing substrates with one, two, or three 1,4-substituted 1,2,3-triazole moieties. The introduction of non-peptidic scaffolds into macrocycles is highly desirable in tuning the activity and physical properties of peptidic macrocycles. We have isolated and fully characterized nine non-natural triazole-containing cyclic peptides, a further ten molecules are also synthesized. PatGmac has now been shown to be an effective and versatile tool for the ring closure by peptide bond formation.

Valera S, Ackermann K, Pliotas C, Huang H, Naismith JH, Bode BE. 2016. Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR. Chemistry, 22 (14), pp. 4700-4703. | Show Abstract | Read more

Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron-electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane-embedded ion channels where data analysis is commonly hindered by multi-spin effects.

Parajuli A, Kwak DH, Dalponte L, Leikoski N, Galica T, Umeobika U, Trembleau L, Bent A, Sivonen K, Wahlsten M et al. 2016. A Unique Tryptophan C-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angew Chem Int Ed Engl, 55 (11), pp. 3596-3599. | Show Abstract | Read more

Cyanobactins are a rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.

Bajaj H, Scorciapino MA, Moynié L, Page MGP, Naismith JH, Ceccarelli M, Winterhalter M. 2016. Molecular Basis of Filtering Carbapenems by Porins from β-Lactam-resistant Clinical Strains of Escherichia coli. J Biol Chem, 291 (6), pp. 2837-2847. | Show Abstract | Read more

Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by "trapping" the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria.

Thompson S, McMahon SA, Naismith JH, O'Hagan D. 2016. Exploration of a potential difluoromethyl-nucleoside substrate with the fluorinase enzyme. Bioorg Chem, 64 pp. 37-41. | Show Abstract | Read more

The investigation of a difluoromethyl-bearing nucleoside with the fluorinase enzyme is described. 5',5'-Difluoro-5'-deoxyadenosine 7 (F2DA) was synthesised from adenosine, and found to bind to the fluorinase enzyme by isothermal titration calorimetry with similar affinity compared to 5'-fluoro-5'-deoxyadenosine 2 (FDA), the natural product of the enzymatic reaction. F2DA7 was found, however, not to undergo the enzyme catalysed reaction with L-selenomethionine, unlike FDA 2, which undergoes reaction with L-selenomethionine to generate Se-adenosylselenomethionine. A co-crystal structure of the fluorinase and F2DA7 and tartrate was solved to 1.8Å, and revealed that the difluoromethyl group bridges interactions known to be essential for activation of the single fluorine in FDA 2. An unusual hydrogen bonding interaction between the hydrogen of the difluoromethyl group and one of the hydroxyl oxygens of the tartrate ligand was also observed. The bridging interactions, coupled with the inherently stronger C-F bond in the difluoromethyl group, offers an explanation for why no reaction is observed.

Constantinescu-Aruxandei D, Petrovic-Stojanovska B, Schiemann O, Naismith JH, White MF. 2016. Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR. Nucleic Acids Res, 44 (2), pp. 954-968. | Show Abstract | Read more

The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.

Moynié L, Hope AG, Finzel K, Schmidberger J, Leckie SM, Schneider G, Burkart MD, Smith AD, Gray DW, Naismith JH. 2016. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA. J Mol Biol, 428 (1), pp. 108-120. | Show Abstract | Read more

Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50=5.7±0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials.

Pliotas C, Dahl ACE, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S et al. 2015. The role of lipids in mechanosensation. Nat Struct Mol Biol, 22 (12), pp. 991-998. | Show Abstract | Read more

The ability of proteins to sense membrane tension is pervasive in biology. A higher-resolution structure of the Escherichia coli small-conductance mechanosensitive channel MscS identifies alkyl chains inside pockets formed by the transmembrane helices (TMs). Purified MscS contains E. coli lipids, and fluorescence quenching demonstrates that phospholipid acyl chains exchange between bilayer and TM pockets. Molecular dynamics and biophysical analyses show that the volume of the pockets and thus the number of lipid acyl chains within them decreases upon channel opening. Phospholipids with one acyl chain per head group (lysolipids) displace normal phospholipids (with two acyl chains) from MscS pockets and trigger channel opening. We propose that the extent of acyl-chain interdigitation in these pockets determines the conformation of MscS. When interdigitation is perturbed by increased membrane tension or by lysolipids, the closed state becomes unstable, and the channel gates.

Oueis E, Adamson C, Mann G, Ludewig H, Redpath P, Migaud M, Westwood NJ, Naismith JH. 2015. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach. Chembiochem, 16 (18), pp. 2646-2650. | Show Abstract | Read more

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.

Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT. 2015. Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Nat Struct Mol Biol, 22 (8), pp. 597-602. | Show Abstract | Read more

RING E3 ligase-catalyzed formation of K63-linked ubiquitin chains by the Ube2V2-Ubc13 E2 complex is required in many important biological processes. Here we report the structure of the RING-domain dimer of rat RNF4 in complex with a human Ubc13∼Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with K63 in a position favorable for attack on the linkage between Ubc13 and the donor (second) ubiquitin held in the active 'folded back' conformation by the RING domain of RNF4. We verified the interfaces identified in the structure by in vitro ubiquitination assays of site-directed mutants. To our knowledge, this represents the first view of synthesis of K63-linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase-mediated catalysis.

Koehnke J, Mann G, Bent AF, Ludewig H, Shirran S, Botting C, Lebl T, Houssen W, Jaspars M, Naismith JH. 2015. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat Chem Biol, 11 (8), pp. 558-563. | Show Abstract | Read more

Regioselective modification of amino acids within the context of a peptide is common to a number of biosynthetic pathways, and many of the resulting products have potential as therapeutics. The ATP-dependent enzyme LynD heterocyclizes multiple cysteine residues to thiazolines within a peptide substrate. The enzyme requires the substrate to have a conserved N-terminal leader for full activity. Catalysis is almost insensitive to immediately flanking residues in the substrate, suggesting that recognition occurs distant from the active site. Nucleotide and peptide substrate co-complex structures of LynD reveal that the substrate leader peptide binds to and extends the β-sheet of a conserved domain of LynD, whereas catalysis is accomplished in another conserved domain. The spatial segregation of catalysis from recognition combines seemingly contradictory properties of regioselectivity and promiscuity, and it appears to be a conserved strategy in other peptide-modifying enzymes. A variant of LynD that efficiently processes substrates without a leader peptide has been engineered.

Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E. 2015. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem, 290 (19), pp. 12165-12183. | Show Abstract | Read more

The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB 1, and P3 R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds.

Hagelueken G, Clarke BR, Huang H, Tuukkanen A, Danciu I, Svergun DI, Hussain R, Liu H, Whitfield C, Naismith JH. 2015. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide. Nat Struct Mol Biol, 22 (1), pp. 50-56. | Show Abstract | Read more

Long-chain bacterial polysaccharides have important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter-dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow size distribution is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Combining crystallography and small-angle X-ray scattering, we found that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions in the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide.

Houssen WE, Bent AF, McEwan AR, Pieiller N, Tabudravu J, Koehnke J, Mann G, Adaba RI, Thomas L, Hawas UW et al. 2014. An efficient method for the in vitro production of azol(in)e-based cyclic peptides. Angew Chem Int Ed Engl, 53 (51), pp. 14171-14174. | Show Abstract | Read more

Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6-9 residues representing 11 out of the 20 canonical amino acids.

Mann G, Koehnke J, Bent AF, Graham R, Houssen W, Jaspars M, Schwarz-Linek U, Naismith JH. 2014. The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster. Acta Crystallogr F Struct Biol Commun, 70 (Pt 12), pp. 1597-1603. | Show Abstract | Read more

Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological `toolkit' to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized. The two domains of unknown function (DUFs) are homologous to each other and are found at the C-termini of the multi-domain proteins PatA and PatG. The domain sequence is found in all cyanobactin-biosynthetic pathways characterized to date, implying a functional role in cyanobactin biosynthesis. Here, the crystal structure of the PatG DUF domain is reported and its binding interactions with plausible substrates are investigated.

Naismith JH, Parker EJ. 2014. Editorial overview: Catalysis and regulation: enzyme catalysis, biosynthetic pathways and regulation. Curr Opin Struct Biol, 29 pp. iv-v. | Read more

Koehnke J, Bent AF, Houssen WE, Mann G, Jaspars M, Naismith JH. 2014. The structural biology of patellamide biosynthesis. Curr Opin Struct Biol, 29 pp. 112-121. | Show Abstract | Read more

The biosynthetic pathways for patellamide and related natural products have recently been studied by structural biology. These pathways produce molecules that have a complex framework and exhibit a diverse array of activity due to the variability of the amino acids that are found in them. As these molecules are difficult to synthesize chemically, exploitation of their properties has been modest. The patellamide pathway involves amino acid heterocyclization, peptide cleavage, peptide macrocyclization, heterocycle oxidation and epimerization; closely related products are also prenylated. Enzyme activities have been identified for all these transformations except epimerization, which may be spontaneous. This review highlights the recent structural and mechanistic work on amino acid heterocyclization, peptide cleavage and peptide macrocyclization. This work should help in using the enzymes to produce novel analogs of the natural products enabling an exploitation of their properties.

Thompson S, Zhang Q, Onega M, McMahon S, Fleming I, Ashworth S, Naismith JH, Passchier J, O'Hagan D. 2014. A localized tolerance in the substrate specificity of the fluorinase enzyme enables "last-step" 18F fluorination of a RGD peptide under ambient aqueous conditions. Angew Chem Int Ed Engl, 53 (34), pp. 8913-8918. | Show Abstract | Read more

A strategy for last-step (18)F fluorination of bioconjugated peptides is reported that exploits an "Achilles heel" in the substrate specificity of the fluorinase enzyme. An acetylene functionality at the C-2 position of the adenosine substrate projects from the active site into the solvent. The fluorinase catalyzes a transhalogenation of 5'-chlorodeoxy-2-ethynyladenosine (ClDEA) to 5'-fluorodeoxy-2-ethynyladenosine (FDEA). Extending a polyethylene glycol linker from the terminus of the acetylene allows the presentation of bioconjugation cargo to the enzyme for (18)F labelling. The method uses an aqueous solution (H2(18)O) of [(18)F]fluoride generated by the cyclotron and has the capacity to isotopically label peptides of choice for positron emission tomography (PET).

Nickerson NN, Mainprize IL, Hampton L, Jones ML, Naismith JH, Whitfield C. 2014. Trapped translocation intermediates establish the route for export of capsular polysaccharides across Escherichia coli outer membranes. Proc Natl Acad Sci U S A, 111 (22), pp. 8203-8208. | Show Abstract | Read more

The outer membrane (OM) of Gram-negative bacteria is designed to exclude potentially harmful molecules. This property presents a challenge for bacteria that must secrete proteins and large glycoconjugates to grow, divide, and persist. Proteins involved in trafficking such molecules have been identified, but their precise roles are often unresolved due to the difficulty in capturing "snapshots" during the export pathway. Wza is the prototype for the large family of OM polysaccharide export proteins. In Escherichia coli, Wza is essential for the assembly of a capsule, a protective surface coat composed of long-chain polysaccharides. Wza creates an octameric α-helical channel spanning the OM, but the bulk of the protein exists as a large periplasmic structure enclosing an extensive lumen. Residues within the lumen of Wza were targeted for site-specific incorporation of the UV photo-cross-linkable unnatural amino acid p-benzoyl-L-phenylalanine. Using this in vivo photo-cross-linking strategy, we were able to trap polysaccharide translocation intermediates within the lumen of Wza, providing the first unequivocal evidence to our knowledge that nascent capsular polysaccharide chains exit the cell through the Wza portal.

Kassaar O, McMahon SA, Thompson R, Botting CH, Naismith JH, Stewart AJ. 2014. Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: implications for angiogenic regulation. Blood, 123 (12), pp. 1948-1955. | Show Abstract | Read more

Histidine-rich glycoprotein (HRG) is a plasma protein consisting of 6 distinct functional domains and is an important regulator of key cardiovascular processes, including angiogenesis and coagulation. The protein is composed of 2 N-terminal domains (N1 and N2), 2 proline-rich regions (PRR1 and PRR2) that flank a histidine-rich region (HRR), and a C-terminal domain. To date, structural information of HRG has largely come from sequence analysis and spectroscopic studies. It is thought that an HRG fragment containing the HRR, released via plasmin-mediated cleavage, acts as a negative regulator of angiogenesis in vivo. However, its release also requires cleavage of a disulphide bond suggesting that its activity is mediated by a redox process. Here, we present a 1.93 Å resolution crystal structure of the N2 domain of serum-purified rabbit HRG. The structure confirms that the N2 domain, which along with the N1 domain, forms an important molecular interaction site on HRG, possesses a cystatin-like fold composed of a 5-stranded antiparallel β-sheet wrapped around a 5-turn α-helix. A native N-linked glycosylation site was identified at Asn184. Moreover, the structure reveals the presence of an S-glutathionyl adduct at Cys185, which has implications for the redox-mediated release of the antiangiogenic cleavage product from HRG.

Ward R, Pliotas C, Branigan E, Hacker C, Rasmussen A, Hagelueken G, Booth IR, Miller S, Lucocq J, Naismith JH, Schiemann O. 2014. Probing the structure of the mechanosensitive channel of small conductance in lipid bilayers with pulsed electron-electron double resonance. Biophys J, 106 (4), pp. 834-842. | Show Abstract | Read more

Mechanosensitive channel proteins are important safety valves against osmotic shock in bacteria, and are involved in sensing touch and sound waves in higher organisms. The mechanosensitive channel of small conductance (MscS) has been extensively studied. Pulsed electron-electron double resonance (PELDOR or DEER) of detergent-solubilized protein confirms that as seen in the crystal structure, the outer ring of transmembrane helices do not pack against the pore-forming helices, creating an apparent void. The relevance of this void to the functional form of MscS in the bilayer is the subject of debate. Here, we report PELDOR measurements of MscS reconstituted into two lipid bilayer systems: nanodiscs and bicelles. The distance measurements from multiple mutants derived from the PELDOR data are consistent with the detergent-solution arrangement of the protein. We conclude, therefore, that the relative positioning of the transmembrane helices is preserved in mimics of the cell bilayer, and that the apparent voids are not an artifact of detergent solution but a property of the protein that will have to be accounted for in any molecular mechanism of gating.

Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O'Hagan D. 2014. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining. Chembiochem, 15 (3), pp. 364-368. | Show Abstract | Read more

The fluorinase is an enzyme that catalyses the combination of S-adenosyl-L-methionine (SAM) and a fluoride ion to generate 5'-fluorodeoxy adenosine (FDA) and L-methionine through a nucleophilic substitution reaction with a fluoride ion as the nucleophile. It is the only native fluorination enzyme that has been characterised. The fluorinase was isolated in 2002 from Streptomyces cattleya, and, to date, this has been the only source of the fluorinase enzyme. Herein, we report three new fluorinase isolates that have been identified by genome mining. The novel fluorinases from Streptomyces sp. MA37, Nocardia brasiliensis, and an Actinoplanes sp. have high homology (80-87 % identity) to the original S. cattleya enzyme. They all possess a characteristic 21-residue loop. The three newly identified genes were overexpressed in E. coli and shown to be fluorination enzymes. An X-ray crystallographic study of the Streptomyces sp. MA37 enzyme demonstrated that it is almost identical in structure to the original fluorinase. Culturing of the Streptomyces sp. MA37 strain demonstrated that it not only also elaborates the fluorometabolites, fluoroacetate and 4-fluorothreonine, similar to S. cattleya, but this strain also produces a range of unidentified fluorometabolites. These are the first new fluorinases to be reported since the first isolate, over a decade ago, and their identification extends the range of fluorination genes available for fluorination biotechnology.

Koehnke J, Bent AF, Zollman D, Smith K, Houssen WE, Zhu X, Mann G, Lebl T, Scharff R, Shirran S et al. 2013. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew Chem Int Ed Engl, 52 (52), pp. 13991-13996. | Show Abstract | Read more

Counting backwards: The cyanobactin class of heterocyclases, exemplified by TruD, possess an almost unique combination of processivity, specificity, chemical versatility, and promiscuity. TruD is shown by biochemical assay to be an adenylase, and processes cysteines in a defined order. The entire substrate leader can be removed and TruD will process a single specific cysteine residue; however the role of leader is to permit processivity through a balance of recognition. ATP/AMP=adenosine tri/monophosphate; PPi=pyrophosphate. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Cukier CD, Hope AG, Elamin AA, Moynie L, Schnell R, Schach S, Kneuper H, Singh M, Naismith JH, Lindqvist Y et al. 2013. Discovery of an allosteric inhibitor binding site in 3-Oxo-acyl-ACP reductase from Pseudomonas aeruginosa. ACS Chem Biol, 8 (11), pp. 2518-2527. | Show Abstract | Read more

3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.

Branigan E, Pliotas C, Hagelueken G, Naismith JH. 2013. Quantification of free cysteines in membrane and soluble proteins using a fluorescent dye and thermal unfolding. Nat Protoc, 8 (11), pp. 2090-2097. | Show Abstract | Read more

Cysteine is an extremely useful site for selective attachment of labels to proteins for many applications, including the study of protein structure in solution by electron paramagnetic resonance (EPR), fluorescence spectroscopy and medical imaging. The demand for quantitative data for these applications means that it is important to determine the extent of the cysteine labeling. The efficiency of labeling is sensitive to the 3D context of cysteine within the protein. Where the label or modification is not directly measurable by optical or magnetic spectroscopy, for example, in cysteine modification to dehydroalanine, assessing labeling efficiency is difficult. We describe a simple assay for determining the efficiency of modification of cysteine residues, which is based on an approach previously used to determine membrane protein stability. The assay involves a reaction between the thermally unfolded protein and a thiol-specific coumarin fluorophore that is only fluorescent upon conjugation with thiols. Monitoring fluorescence during thermal denaturation of the protein in the presence of the dye identifies the temperature at which the maximum fluorescence occurs; this temperature differs among proteins. Comparison of the fluorescence intensity at the identified temperature between modified, unmodified (positive control) and cysteine-less protein (negative control) allows for the quantification of free cysteine. We have quantified both site-directed spin labeling and dehydroalanine formation. The method relies on a commonly available fluorescence 96-well plate reader, which rapidly screens numerous samples within 1.5 h and uses <100 μg of material. The approach is robust for both soluble and detergent-solubilized membrane proteins.

Giannoulis A, Ward R, Branigan E, Naismith JH, Bode BE. 2013. PELDOR in rotationally symmetric homo-oligomers. Mol Phys, 111 (18-19), pp. 2845-2854. | Show Abstract | Read more

Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.

Wadsworth JM, Clarke DJ, McMahon SA, Lowther JP, Beattie AE, Langridge-Smith PRR, Broughton HB, Dunn TM, Naismith JH, Campopiano DJ. 2013. The chemical basis of serine palmitoyltransferase inhibition by myriocin. J Am Chem Soc, 135 (38), pp. 14276-14285. | Show Abstract | Read more

Sphingolipids (SLs) are essential components of cellular membranes formed from the condensation of L-serine and a long-chain acyl thioester. This first step is catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) which is a promising therapeutic target. The fungal natural product myriocin is a potent inhibitor of SPT and is widely used to block SL biosynthesis despite a lack of a detailed understanding of its molecular mechanism. By combining spectroscopy, mass spectrometry, X-ray crystallography, and kinetics, we have characterized the molecular details of SPT inhibition by myriocin. Myriocin initially forms an external aldimine with PLP at the active site, and a structure of the resulting co-complex explains its nanomolar affinity for the enzyme. This co-complex then catalytically degrades via an unexpected 'retro-aldol-like' cleavage mechanism to a C18 aldehyde which in turn acts as a suicide inhibitor of SPT by covalent modification of the essential catalytic lysine. This surprising dual mechanism of inhibition rationalizes the extraordinary potency and longevity of myriocin inhibition.

Warelow TP, Oke M, Schoepp-Cothenet B, Dahl JU, Bruselat N, Sivalingam GN, Leimkühler S, Thalassinos K, Kappler U, Naismith JH, Santini JM. 2013. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. PLoS One, 8 (8), pp. e72535. | Show Abstract | Read more

The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.

Reeks J, Naismith JH, White MF. 2013. CRISPR interference: a structural perspective. Biochem J, 453 (2), pp. 155-166. | Show Abstract | Read more

CRISPR (cluster of regularly interspaced palindromic repeats) is a prokaryotic adaptive defence system, providing immunity against mobile genetic elements such as viruses. Genomically encoded crRNA (CRISPR RNA) is used by Cas (CRISPR-associated) proteins to target and subsequently degrade nucleic acids of invading entities in a sequence-dependent manner. The process is known as 'interference'. In the present review we cover recent progress on the structural biology of the CRISPR/Cas system, focusing on the Cas proteins and complexes that catalyse crRNA biogenesis and interference. Structural studies have helped in the elucidation of key mechanisms, including the recognition and cleavage of crRNA by the Cas6 and Cas5 proteins, where remarkable diversity at the level of both substrate recognition and catalysis has become apparent. The RNA-binding RAMP (repeat-associated mysterious protein) domain is present in the Cas5, Cas6, Cas7 and Cmr3 protein families and RAMP-like domains are found in Cas2 and Cas10. Structural analysis has also revealed an evolutionary link between the small subunits of the type I and type III-B interference complexes. Future studies of the interference complexes and their constituent components will transform our understanding of the system.

Bent AF, Koehnke J, Houssen WE, Smith MCM, Jaspars M, Naismith JH. 2013. Structure of PatF from Prochloron didemni. Acta Crystallogr Sect F Struct Biol Cryst Commun, 69 (Pt 6), pp. 618-623. | Show Abstract | Read more

Patellamides are macrocyclic peptides with potent biological effects and are a subset of the cyanobactins. Cyanobactins are natural products that are produced by a series of enzymatic transformations and a common modification is the addition of a prenyl group. Puzzlingly, the pathway for patellamides in Prochloron didemni contains a gene, patF, with homology to prenylases, but patellamides are not themselves prenylated. The structure of the protein PatF was cloned, expressed, purified and determined. Prenylase activity could not be demonstrated for the protein, and examination of the structure revealed changes in side-chain identity at the active site. It is suggested that these changes have inactivated the protein. Attempts to mutate these residues led to unfolded protein.

Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH, White MF. 2013. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem J, 452 (2), pp. 223-230. | Show Abstract | Read more

The competition between viruses and hosts is played out in all branches of life. Many prokaryotes have an adaptive immune system termed 'CRISPR' (clustered regularly interspaced short palindromic repeats) which is based on the capture of short pieces of viral DNA. The captured DNA is integrated into the genomic DNA of the organism flanked by direct repeats, transcribed and processed to generate crRNA (CRISPR RNA) that is loaded into a variety of effector complexes. These complexes carry out sequence-specific detection and destruction of invading mobile genetic elements. In the present paper, we report the structure and activity of a Cas6 (CRISPR-associated 6) enzyme (Sso1437) from Sulfolobus solfataricus responsible for the generation of unit-length crRNA species. The crystal structure reveals an unusual dimeric organization that is important for the enzyme's activity. In addition, the active site lacks the canonical catalytic histidine residue that has been viewed as an essential feature of the Cas6 family. Although several residues contribute towards catalysis, none is absolutely essential. Coupled with the very low catalytic rate constants of the Cas6 family and the plasticity of the active site, this suggests that the crRNA recognition and chaperone-like activities of the Cas6 family should be considered as equal to or even more important than their role as traditional enzymes.

Bushell SR, Mainprize IL, Wear MA, Lou H, Whitfield C, Naismith JH. 2013. Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli. Structure, 21 (5), pp. 844-853. | Show Abstract | Read more

Many pathogenic bacteria encase themselves in a polysaccharide capsule that provides a barrier to the physical and immunological challenges of the host. The mechanism by which the capsule assembles around the bacterial cell is unknown. Wzi, an integral outer-membrane protein from Escherichia coli, has been implicated in the formation of group 1 capsules. The 2.6 Å resolution structure of Wzi reveals an 18-stranded β-barrel fold with a novel arrangement of long extracellular loops that blocks the extracellular entrance and a helical bundle that plugs the periplasmic end. Mutagenesis shows that specific extracellular loops are required for in vivo capsule assembly. The data show that Wzi binds the K30 carbohydrate polymer and, crucially, that mutants functionally deficient in vivo show no binding to K30 polymer in vitro. We conclude that Wzi is a novel outer-membrane lectin that assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides.

Reeks J, Graham S, Anderson L, Liu H, White MF, Naismith JH. 2013. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes. RNA Biol, 10 (5), pp. 762-769. | Show Abstract | Read more

The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.

Koehnke J, Morawitz F, Bent AF, Houssen WE, Shirran SL, Fuszard MA, Smellie IA, Botting CH, Smith MCM, Jaspars M, Naismith JH. 2013. An enzymatic route to selenazolines. Chembiochem, 14 (5), pp. 564-567. | Show Abstract | Read more

Ringing the changes: Selenazolines have applications in medicinal chemistry, but their synthesis is challenging. We report a new convenient and less toxic route to these heterocycles that starts from commercially available selenocysteine. The new route depends on a heterocyclase enzyme that creates oxazolines and thiazolines from serines/threonines and cysteines.

Alphey MS, Pirrie L, Torrie LS, Boulkeroua WA, Gardiner M, Sarkar A, Maringer M, Oehlmann W, Brenk R, Scherman MS et al. 2013. Allosteric competitive inhibitors of the glucose-1-phosphate thymidylyltransferase (RmlA) from Pseudomonas aeruginosa. ACS Chem Biol, 8 (2), pp. 387-396. | Show Abstract | Read more

Glucose-1-phosphate thymidylyltransferase (RmlA) catalyzes the condensation of glucose-1-phosphate (G1P) with deoxy-thymidine triphosphate (dTTP) to yield dTDP-d-glucose and pyrophosphate. This is the first step in the l-rhamnose biosynthetic pathway. l-Rhamnose is an important component of the cell wall of many microorganisms, including Mycobacterium tuberculosis and Pseudomonas aeruginosa. Here we describe the first nanomolar inhibitors of P. aeruginosa RmlA. These thymine analogues were identified by high-throughput screening and subsequently optimized by a combination of protein crystallography, in silico screening, and synthetic chemistry. Some of the inhibitors show inhibitory activity against M. tuberculosis. The inhibitors do not bind at the active site of RmlA but bind at a second site remote from the active site. Despite this, the compounds act as competitive inhibitors of G1P but with high cooperativity. This novel behavior was probed by structural analysis, which suggests that the inhibitors work by preventing RmlA from undergoing the conformational change key to its ordered bi-bi mechanism.

Moynié L, Leckie SM, McMahon SA, Duthie FG, Koehnke A, Taylor JW, Alphey MS, Brenk R, Smith AD, Naismith JH. 2013. Structural insights into the mechanism and inhibition of the β-hydroxydecanoyl-acyl carrier protein dehydratase from Pseudomonas aeruginosa. J Mol Biol, 425 (2), pp. 365-377. | Show Abstract | Read more

Fatty acid biosynthesis is an essential component of metabolism in both eukaryotes and prokaryotes. The fatty acid biosynthetic pathway of Gram-negative bacteria is an established therapeutic target. Two homologous enzymes FabA and FabZ catalyze a key step in fatty acid biosynthesis; both dehydrate hydroxyacyl fatty acids that are coupled via a phosphopantetheine to an acyl carrier protein (ACP). The resulting trans-2-enoyl-ACP is further polymerized in a processive manner. FabA, however, carries out a second reaction involving isomerization of trans-2-enoyl fatty acid to cis-3-enoyl fatty acid. We have solved the structure of Pseudomonas aeruginosa FabA with a substrate allowing detailed molecular insight into the interactions of the active site. This has allowed a detailed examination of the factors governing the second catalytic step. We have also determined the structure of FabA in complex with small molecules (so-called fragments). These small molecules occupy distinct regions of the active site and form the basis for a rational inhibitor design program.

Moynie L, Schnell R, McMahon SA, Sandalova T, Boulkerou WA, Schmidberger JW, Alphey M, Cukier C, Duthie F, Kopec J et al. 2013. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr Sect F Struct Biol Cryst Commun, 69 (Pt 1), pp. 25-34. | Show Abstract | Read more

Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.

Houssen WE, Koehnke J, Zollman D, Vendome J, Raab A, Smith MCM, Naismith JH, Jaspars M. 2012. The discovery of new cyanobactins from Cyanothece PCC 7425 defines a new signature for processing of patellamides. Chembiochem, 13 (18), pp. 2683-2689. | Show Abstract | Read more

Cyanobactins, including patellamides, are a group of cyanobacterial post-translationally modified ribosomal cyclic peptides. The final product should in theory be predictable from the sequence of the precursor peptide and the associated tailoring enzymes. Understanding the mechanism and recognition requirements of these enzymes will allow their rational engineering. We have identified three new cyanobactins from a Cyanothece PCC 7425 culture subjected to a heat shock. One of these compounds revealed a novel signature signal for ThcA, the subtilisin-like serine protease that is homologous to the patellamide protease PatA. The crystal structure of the latter and modelling studies allow rationalisation of the recognition determinants for both enzymes, consistent with the ribosomal biosynthetic origin of the new compounds.

Hagelueken G, Huang H, Clarke BR, Lebl T, Whitfield C, Naismith JH. 2012. Structure of WbdD: a bifunctional kinase and methyltransferase that regulates the chain length of the O antigen in Escherichia coli O9a. Mol Microbiol, 86 (3), pp. 730-742. | Show Abstract | Read more

The Escherichia coli serotype O9a O-antigen polysaccharide (O-PS) is a model for glycan biosynthesis and export by the ATP-binding cassette transporter-dependent pathway. The polymannose O9a O-PS is synthesized as a polyprenol-linked glycan by mannosyltransferase enzymes located at the cytoplasmic membrane. The chain length of the O9a O-PS is tightly regulated by the WbdD enzyme. WbdD first phosphorylates the terminal non-reducing mannose of the O-PS and then methylates the phosphate, stopping polymerization. The 2.2 Å resolution structure of WbdD reveals a bacterial methyltransferase domain joined to a eukaryotic kinase domain. The kinase domain is again fused to an extended C-terminal coiled-coil domain reminiscent of eukaryotic DMPK (Myotonic Dystrophy Protein Kinase) family kinases such as Rho-associated protein kinase (ROCK). WbdD phosphorylates 2-α-d-mannosyl-d-mannose (2α-MB), a short mimic of the O9a polymer. Mutagenesis identifies those residues important in catalysis and substrate recognition and the in vivo phenotypes of these mutants are used to dissect the termination reaction. We have determined the structures of co-complexes of WbdD with two known eukaryotic protein kinase inhibitors. Although these are potent inhibitors in vitro, they do not show any in vivo activity. The structures reveal new insight into O-PS chain-length regulation in this important model system.

Pliotas C, Ward R, Branigan E, Rasmussen A, Hagelueken G, Huang H, Black SS, Booth IR, Schiemann O, Naismith JH. 2012. Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. Proc Natl Acad Sci U S A, 109 (40), pp. E2675-E2682. | Show Abstract | Read more

The heptameric mechanosensitive channel of small conductance (MscS) provides a critical function in Escherichia coli where it opens in response to increased bilayer tension. Three approaches have defined different closed and open structures of the channel, resulting in mutually incompatible models of gating. We have attached spin labels to cysteine mutants on key secondary structural elements specifically chosen to discriminate between the competing models. The resulting pulsed electron-electron double resonance (PELDOR) spectra matched predicted distance distributions for the open crystal structure of MscS. The fit for the predictions by structural models of MscS derived by other techniques was not convincing. The assignment of MscS as open in detergent by PELDOR was unexpected but is supported by two crystal structures of spin-labeled MscS. PELDOR is therefore shown to be a powerful experimental tool to interrogate the conformation of transmembrane regions of integral membrane proteins.

Hagelueken G, Huang H, Harlos K, Clarke BR, Whitfield C, Naismith JH. 2012. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a. Acta Crystallogr D Biol Crystallogr, 68 (Pt 10), pp. 1371-1379. | Show Abstract | Read more

WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. 2012. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature, 489 (7414), pp. 115-120. | Show Abstract | Read more

Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.

Koehnke J, Bent A, Houssen WE, Zollman D, Morawitz F, Shirran S, Vendome J, Nneoyiegbe AF, Trembleau L, Botting CH et al. 2012. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat Struct Mol Biol, 19 (8), pp. 767-772. | Show Abstract | Read more

Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications.

Naismith JH, Booth IR. 2012. Bacterial mechanosensitive channels--MscS: evolution's solution to creating sensitivity in function. Annu Rev Biophys, 41 (1), pp. 157-177. | Show Abstract | Read more

The discovery of mechanosensing channels has changed our understanding of bacterial physiology. The mechanosensitive channel of small conductance (MscS) is perhaps the most intensively studied of these channels. MscS has at least two states: closed, which does not allow solutes to exit the cytoplasm, and open, which allows rapid efflux of solvent and solutes. The ability to appropriately open or close the channel (gating) is critical to bacterial survival. We briefly review the science that led to the isolation and identification of MscS. We concentrate on the structure-function relationship of the channel, in particular the structural and biochemical approaches to understanding channel gating. We highlight the troubling discrepancies between the various models developed to understand MscS gating.

Lowther J, Naismith JH, Dunn TM, Campopiano DJ. 2012. Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans, 40 (3), pp. 547-554. | Show Abstract | Read more

SLs (sphingolipids) are composed of fatty acids and a polar head group derived from L-serine. SLs are essential components of all eukaryotic and many prokaryotic membranes but S1P (sphingosine 1-phosphate) is also a potent signalling molecule. Recent efforts have sought to inventory the large and chemically complex family of SLs (LIPID MAPS Consortium). Detailed understanding of SL metabolism may lead to therapeutic agents specifically directed at SL targets. We have studied the enzymes involved in SL biosynthesis; later stages are species-specific, but all core SLs are synthesized from the condensation of L-serine and a fatty acid thioester such as palmitoyl-CoA that is catalysed by SPT (serine palmitoyltransferase). SPT is a PLP (pyridoxal 5'-phosphate)-dependent enzyme that forms 3-KDS (3-ketodihydrosphingosine) through a decarboxylative Claisen-like condensation reaction. Eukaryotic SPTs are membrane-bound multi-subunit enzymes, whereas bacterial enzymes are cytoplasmic homodimers. We use bacterial SPTs (e.g. from Sphingomonas) to probe their structure and mechanism. Mutations in human SPT cause a neuropathy [HSAN1 (hereditary sensory and autonomic neuropathy type 1)], a rare SL metabolic disease. How these mutations perturb SPT activity is subtle and bacterial SPT mimics of HSAN1 mutants affect the enzyme activity and structure of the SPT dimer. We have also explored SPT inhibition using various inhibitors (e.g. cycloserine). A number of new subunits and regulatory proteins that have a direct impact on the activity of eukaryotic SPTs have recently been discovered. Knowledge gained from bacterial SPTs sheds some light on the more complex mammalian systems. In the present paper, we review historical aspects of the area and highlight recent key developments.

Naismith JH. 2012. Tryptophan oxygenation: mechanistic considerations. Biochem Soc Trans, 40 (3), pp. 509-514. | Show Abstract | Read more

From a protein structural viewpoint, tryptophan is often considered an inert structural amino acid, playing a role as a hydrophobic anchor in membrane proteins or as part of the hydrophobic core of soluble proteins. However, tryptophan is the only polyaromatic amino acid and, from a chemical viewpoint, possesses unique reactivity owing to the electron-richness of the indole system. This reactivity is seen in the area of natural products and metabolites which have exquisite modifications of the indole ring system. Enzymes have evolved multiple strategies to break or modify the indole ring; one particular class is the IDO/TDO (indoleamine/tryptophan dioxygenase) superfamily. A new member of this family, PrnB, on the surface catalyses a very different reaction, but actually shares much of the early chemistry with the tryptophan dioxygenases. Studies on PrnB have contributed to our understanding of the wider superfamily. In the present mini-review, recent developments in our understanding of how the TDO class of enzymes use activated molecular oxygen to break the indole ring are discussed.

Zhu X, Yan X, Carter LG, Liu H, Graham S, Coote PJ, Naismith J. 2012. A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 68 (Pt 6), pp. 610-615. | Show Abstract | Read more

The removal of chemically damaged DNA bases such as 3-methyladenine (3-MeA) is an essential process in all living organisms and is catalyzed by the enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme selectively recognizes the alkylated 3-MeA over the much more abundant adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows that protonation of 3-MeA decreases its binding affinity, confirming previous fluorescence studies that show that charge-charge recognition is not critical for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a particular tautomer unique to 3-MeA contributes to recognition and selection.

Hagelueken G, Ward R, Naismith JH, Schiemann O. 2012. MtsslWizard: In Silico Spin-Labeling and Generation of Distance Distributions in PyMOL. Appl Magn Reson, 42 (3), pp. 377-391. | Show Abstract | Read more

MtsslWizard is a computer program, which operates as a plugin for the PyMOL molecular graphics system. MtsslWizard estimates distances between spin labels on proteins quickly with user-configurable options through a simple graphical interface. In default mode, the program searches for ensembles of possible MTSSL conformations that do not clash with a static model of the protein. Once conformations are assigned, distance distributions between two or more ensembles are calculated, displayed, and can be exported to other software. The program's use is evaluated in a number of challenging test cases and its strengths and weaknesses evaluated. The benefits of the program are its accuracy and simplicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00723-012-0314-0) contains supplementary material, which is available to authorized users.

Paytubi S, McMahon SA, Graham S, Liu H, Botting CH, Makarova KS, Koonin EV, Naismith JH, White MF. 2012. Displacement of the canonical single-stranded DNA-binding protein in the Thermoproteales. Proc Natl Acad Sci U S A, 109 (7), pp. E398-E405. | Show Abstract | Read more

ssDNA-binding proteins (SSBs) based on the oligonucleotide-binding fold are considered ubiquitous in nature and play a central role in many DNA transactions including replication, recombination, and repair. We demonstrate that the Thermoproteales, a clade of hyperthermophilic Crenarchaea, lack a canonical SSB. Instead, they encode a distinct ssDNA-binding protein that we term "ThermoDBP," exemplified by the protein Ttx1576 from Thermoproteus tenax. ThermoDBP binds specifically to ssDNA with low sequence specificity. The crystal structure of Ttx1576 reveals a unique fold and a mechanism for ssDNA binding, consisting of an extended cleft lined with hydrophobic phenylalanine residues and flanked by basic amino acids. Two ssDNA-binding domains are linked by a coiled-coil leucine zipper. ThermoDBP appears to have displaced the canonical SSB during the diversification of the Thermoproteales, a highly unusual example of the loss of a "ubiquitous" protein during evolution.

Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers S-V et al. 2012. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell, 45 (3), pp. 303-313. | Show Abstract | Read more

The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a protospacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.

Wang W, Rasmussen T, Harding AJ, Booth NA, Booth IR, Naismith JH. 2012. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function. J Mol Biol, 415 (3), pp. 538-546. | Show Abstract | Read more

Escherichia coli and Gram-negative bacteria that live in the human gut must be able to tolerate rapid and large changes in environmental pH. Low pH irreversibly denatures and precipitates many bacterial proteins. While cytoplasmic proteins are well buffered against such swings, periplasmic proteins are not. Instead, it appears that some bacteria utilize chaperone proteins that stabilize periplasmic proteins, preventing their precipitation. Two highly expressed and related proteins, HdeA and HdeB, have been identified as acid-activated chaperones. The structure of HdeA is known and a mechanism for activation has been proposed. In this model, dimeric HdeA dissociates at low pH, and the exposed dimeric interface binds exposed hydrophobic surfaces of acid-denatured proteins, preventing their irreversible aggregation. We now report the structure and biophysical characterization of the HdeB protein. The monomer of HdeB shares a similar structure with HdeA, but its dimeric interface is different in composition and spatial location. We have used fluorescence to study the behavior of HdeB as pH is lowered, and like HdeA, it dissociates to monomers. We have identified one of the key intersubunit interactions that controls pH-induced monomerization. Our analysis identifies a structural interaction within the HdeB monomer that is disrupted as pH is lowered, leading to enhanced structural flexibility.

Lowther J, Yard BA, Johnson KA, Carter LG, Bhat VT, Raman MCC, Clarke DJ, Ramakers B, McMahon SA, Naismith JH, Campopiano DJ. 2011. Back matter Molecular BioSystems, 7 (12), pp. 3375-3375. | Read more

Cited:

55

Scopus

Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR et al. 2011. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli PLoS ONE, 6 (10), | Show Abstract | Read more

Antibiotic-resistant bacteria, particularly Gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane. © 2011 Lou et al.

Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR et al. 2011. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One, 6 (10), pp. e25825. | Show Abstract | Read more

Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.

Schmelz S, Botting CH, Song L, Kadi NF, Challis GL, Naismith JH. 2011. Structural basis for acyl acceptor specificity in the achromobactin biosynthetic enzyme AcsD. J Mol Biol, 412 (3), pp. 495-504. | Show Abstract | Read more

Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential.

Plechanovová A, Jaffray EG, McMahon SA, Johnson KA, Navrátilová I, Naismith JH, Hay RT. 2011. Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat Struct Mol Biol, 18 (9), pp. 1052-1059. | Show Abstract | Read more

Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation, we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model, the 'Ile44 hydrophobic patch' of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING, and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the thioester bond for catalysis.

Wilfong EM, Kogiso Y, Muthukrishnan S, Kowatz T, Du Y, Bowie A, Naismith JH, Hadad CM, Toone EJ, Gustafson TL. 2011. A multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model. J Am Chem Soc, 133 (30), pp. 11515-11523. | Show Abstract | Read more

In recent years, interfacial mobility has gained popularity as a model with which to rationalize both affinity in ligand binding and the often observed phenomenon of enthalpy-entropy compensation. While protein contraction and reduced mobility, as demonstrated by computational and NMR techniques respectively, have been correlated to entropies of binding for a variety of systems, to our knowledge, Raman difference spectroscopy has never been included in these analyses. Here, nonresonance Raman difference spectroscopy, isothermal titration calorimetry, and X-ray crystallography were utilized to correlate protein contraction, as demonstrated by an increase in protein interior packing and decreased residual protein movement, with trends of enthalpy-entropy compensation. These results are in accord with the interfacial mobility model and lend additional credence to this view of protein activity.

Compton ELR, Karinou E, Naismith JH, Gabel F, Javelle A. 2011. Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J Biol Chem, 286 (30), pp. 27058-27067. | Show Abstract | Read more

The SLC26/SulP (solute carrier/sulfate transporter) proteins are a superfamily of anion transporters conserved from bacteria to man, of which four have been identified in human diseases. Proteins within the SLC26/SulP family exhibit a wide variety of functions, transporting anions from halides to carboxylic acids. The proteins comprise a transmembrane domain containing between 10-12 transmembrane helices followed a by C-terminal cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domain. These proteins are expected to undergo conformational changes during the transport cycle; however, structural information for this family remains sparse, particularly for the full-length proteins. To address this issue, we conducted an expression and detergent screen on bacterial Slc26 proteins. The screen identified a Yersinia enterocolitica Slc26A protein as the ideal candidate for further structural studies as it can be purified to homogeneity. Partial proteolysis, co-purification, and analytical size exclusion chromatography demonstrate that the protein purifies as stable oligomers. Using small angle neutron scattering combined with contrast variation, we have determined the first low resolution structure of a bacterial Slc26 protein without spectral contribution from the detergent. The structure confirms that the protein forms a dimer stabilized via its transmembrane core; the cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. Supported by additional biochemical data, the structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.

Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copié V et al. 2011. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem, 286 (24), pp. 21643-21656. | Show Abstract | Read more

In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.

Morris C, Pajon A, Griffiths SL, Daniel E, Savitsky M, Lin B, Diprose JM, da Silva AW, Pilicheva K, Troshin P et al. 2011. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory. Acta Crystallogr D Biol Crystallogr, 67 (Pt 4), pp. 249-260. | Show Abstract | Read more

The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

Lang A, Polnick S, Nicke T, William P, Patallo EP, Naismith JH, van Pée K-H. 2011. Änderung der Regioselektivität der Tryptophan-7-Halogenase PrnA durch ortsspezifische Mutagenese Angewandte Chemie, 123 (13), pp. 3007-3010. | Read more

Lang A, Polnick S, Nicke T, William P, Patallo EP, Naismith JH, van Pée K-H. 2011. Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis. Angew Chem Int Ed Engl, 50 (13), pp. 2951-2953. | Show Abstract | Read more

(Chemical Equation Presented) Creating more space in the active site of the tryptophan 7-halogenase PrnA by exchanging the large amino acid phenylalanine for the smaller alanine makes it possible for the substrate to bind in different orientations (see picture; yellow PrnA, blue PrnAF103A variant). This results in halogenation of the differently bound substrate in the 5-position of the indole ring. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA.

Harrison JA, Kartha KPR, Fournier EJL, Lowary TL, Malet C, Nilsson UJ, Hindsgaul O, Schenkman S, Naismith JH, Field RA. 2011. Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Org Biomol Chem, 9 (5), pp. 1653-1660. | Show Abstract | Read more

Systematically modified octyl galactosides and octyl N-acetyllactosamines were assessed as inhibitors of, and substrates for, T. cruzi trans-sialidase (TcTS) in the context of exploring its acceptor substrate binding site. These studies show that TcTS, which catalyses the α-(2→3)-sialylation of non-reducing terminal β-galactose residues, is largely intolerant of substitution of the galactose 2 and 4 positions whereas substitution of the galactose 6 position is well tolerated. Further studies show that even the addition of a bulky sugar residue (glucose, galactose) does not impact negatively on TcTS binding and turnover, which highlights the potential of 'internal' 6-substituted galactose residues to serve as TcTS acceptor substrates. Results from screening a 93-membered thiogalactoside library highlight a number of structural features (notably imidazoles and indoles) that are worthy of further investigation in the context of TcTS inhibitor development.

Oke M, Kerou M, Liu H, Peng X, Garrett RA, Prangishvili D, Naismith JH, White MF. 2011. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication. J Virol, 85 (2), pp. 925-931. | Show Abstract | Read more

The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed.

Lowther J, Yard BA, Johnson KA, Carter LG, Bhat VT, Raman MCC, Clarke DJ, Ramakers B, McMahon SA, Naismith JH, Campopiano DJ. 2011. Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation (vol 6, pg 1682, 2010) MOLECULAR BIOSYSTEMS, 7 (12), pp. 3375-3375.

Bushell SR, Lou H, Wallat GD, Beis K, Whitfield C, Naismith JH. 2010. Crystallization and preliminary diffraction analysis of Wzi, a member of the capsule export and assembly pathway in Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun, 66 (Pt 12), pp. 1621-1625. | Show Abstract | Read more

External polysaccharide capsules provide a physical barrier that is employed by many species of bacteria for the purposes of host evasion and persistence. Wzi is a 53 kDa outer membrane β-barrel protein that is thought to play a role in the attachment of group 1 capsular polysaccharides to the cell surface. The purification and crystallization of an Escherichia coli homologue of Wzi is reported and diffraction data from native and selenomethionine-incorporated protein crystals are presented. Crystals of C-terminally His6-tagged Wzi diffracted to 2.8 Å resolution. Data processing showed that the crystals belonged to the orthorhombic space group C222, with unit-cell parameters a=128.8, b=152.8, c=94.4 Å, α=β=γ=90°. A His-tagged selenomethionine-containing variant of Wzi has also been crystallized in the same space group and diffraction data have been recorded to 3.8 Å resolution. Data processing shows that the variant crystal has similar unit-cell parameters to the native crystal.

Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Naismith JH, Schwarz-Linek U. 2010. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew Chem Int Ed Engl, 49 (45), pp. 8421-8425. | Show Abstract | Read more

One bond makes all the difference: Three suitably positioned amino acid side chains (see picture) and a hydrophobic environment are all that is required for an amidation reaction with remarkable consequences. An emerging central building block of bacterial surface proteins owes its stability to a spontaneously formed isopeptide bond. The impact of this bond on protein structure and dynamics and the mechanism of its formation are scrutinized in detail. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Raman MCC, Johnson KA, Clarke DJ, Naismith JH, Campopiano DJ. 2010. The serine palmitoyltransferase from Sphingomonas wittichii RW1: An interesting link to an unusual acyl carrier protein. Biopolymers, 93 (9), pp. 811-822. | Show Abstract | Read more

Serine palmitoyltransferase (SPT) catalyses the first step in the de novo biosynthesis of sphingolipids (SLs). It uses a decarboxylative Claisen-like condensation reaction to couple L-serine with palmitoyl-CoA to generate a long-chain base product, 3-ketodihydrosphingosine. SLs are produced by mammals, plants, yeast, and some bacteria, and we have exploited the complete genome sequence of Sphingomonas wittichii to begin a complete analysis of bacterial sphingolipid biosynthesis. Here, we describe the enzymatic characterization of the SPT from this organism and present its high-resolution x-ray structure. Moreover, we identified an open reading frame with high sequence homology to acyl carrier proteins (ACPs) that are common to fatty acid biosynthetic pathways. This small protein was co-expressed with the SPT and we isolated and characterised the apo- and holo-forms of the ACP. Our studies suggest a link between fatty acid and sphingolipid metabolism.

Lowther J, Yard BA, Johnson KA, Carter LG, Bhat VT, Raman MCC, Clarke DJ, Ramakers B, McMahon SA, Naismith JH, Campopiano DJ. 2010. Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation. Mol Biosyst, 6 (9), pp. 1682-1693. | Show Abstract | Read more

Cycloserine (CS, 4-amino-3-isoxazolidone) is a cyclic amino acid mimic that is known to inhibit many essential pyridoxal 5'-phosphate (PLP)-dependent enzymes. Two CS enantiomers are known; D-cycloserine (DCS, also known as Seromycin) is a natural product that is used to treat resistant Mycobacterium tuberculosis infections as well as neurological disorders since it is a potent NMDA receptor agonist, and L-cycloserine (LCS) is a synthetic enantiomer whose usefulness as a drug has been hampered by its inherent toxicity arising through inhibition of sphingolipid metabolism. Previous studies on various PLP-dependent enzymes revealed a common mechanism of inhibition by both enantiomers of CS; the PLP cofactor is disabled by forming a stable 3-hydroxyisoxazole/pyridoxamine 5'-phosphate (PMP) adduct at the active site where the cycloserine ring remains intact. Here we describe a novel mechanism of CS inactivation of the PLP-dependent enzyme serine palmitoyltransferase (SPT) from Sphingomonas paucimobilis. SPT catalyses the condensation of l-serine and palmitoyl-CoA, the first step in the de novo sphingolipid biosynthetic pathway. We have used a range of kinetic, spectroscopic and structural techniques to postulate that both LCS and DCS inactivate SPT by transamination to form a free pyridoxamine 5'-phosphate (PMP) and beta-aminooxyacetaldehyde that remain bound at the active site. We suggest this occurs by ring opening of the cycloserine ring followed by decarboxylation. Enzyme kinetics show that inhibition is reversed by incubation with excess PLP and that LCS is a more effective SPT inhibitor than DCS. UV-visible spectroscopic data, combined with site-directed mutagenesis, suggest that a mobile Arg(378) residue is involved in cycloserine inactivation of SPT.

Zhu X, van Pée K-H, Naismith JH. 2010. The ternary complex of PrnB (the second enzyme in the pyrrolnitrin biosynthesis pathway), tryptophan, and cyanide yields new mechanistic insights into the indolamine dioxygenase superfamily. J Biol Chem, 285 (27), pp. 21126-21133. | Show Abstract | Read more

Pyrrolnitrin (3-chloro-4-(2'-nitro-3'-chlorophenyl)pyrrole) is a broad-spectrum antifungal compound isolated from Pseudomonas pyrrocinia. Four enzymes (PrnA, PrnB, PrnC, and PrnD) are required for pyrrolnitrin biosynthesis from tryptophan. PrnB rearranges the indole ring of 7-Cl-l-tryptophan and eliminates the carboxylate group. PrnB shows robust activity in vivo, but in vitro activity for PrnB under defined conditions remains undetected. The structure of PrnB establishes that the enzyme belongs to the heme b-dependent indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) family. We report the cyanide complex of PrnB and two ternary complexes with both l-tryptophan or 7-Cl-l-tryptophan and cyanide. The latter two complexes are essentially identical and mimic the likely catalytic ternary complex that occurs during turnover. In the cyanide ternary complexes, a loop previously disordered becomes ordered, contributing to the binding of substrates. The conformations of the bound tryptophan substrates are changed from that seen previously in the binary complexes. In l-tryptophan ternary complex, the indole ring now adopts the same orientation as seen in the PrnB binary complexes with other tryptophan substrates. The amide and carboxylate group of the substrate are orientated in a new conformation. Tyr(321) and Ser(332) play a key role in binding these groups. The structures suggest that catalysis requires an l-configured substrate. Isothermal titration calorimetry data suggest d-tryptophan does not bind after cyanide (or oxygen) coordinates with the distal (or sixth) site of heme. This is the first ternary complex with a tryptophan substrate of a member of the tryptophan dioxygenase superfamily and has mechanistic implications.

Kowatz T, Morrison JP, Tanner ME, Naismith JH. 2010. The crystal structure of the Y140F mutant of ADP-L-glycero-D-manno-heptose 6-epimerase bound to ADP-beta-D-mannose suggests a one base mechanism. Protein Sci, 19 (7), pp. 1337-1343. | Show Abstract | Read more

Bacteria synthesize a wide array of unusual carbohydrate molecules, which they use in a variety of ways. The carbohydrate L-glycero-D-manno-heptose is an important component of lipopolysaccharide and is synthesized in a complex series of enzymatic steps. One step involves the epimerization at the C6'' position converting ADP-D-glycero-D-manno-heptose into ADP-L-glycero-D-manno-heptose. The enzyme responsible is a member of the short chain dehydrogenase superfamily, known as ADP-L-glycero-D-manno-heptose 6-epimerase (AGME). The structure of the enzyme was known but the arrangement of the catalytic site with respect to the substrate is unclear. We now report the structure of AGME bound to a substrate mimic, ADP-beta-D-mannose, which has the same stereochemical configuration as the substrate. The complex identifies the key residues and allows mechanistic insight into this novel enzyme.

Oke M, Carter LG, Johnson KA, Liu H, McMahon SA, Yan X, Kerou M, Weikart ND, Kadi N, Sheikh MA et al. 2010. The Scottish Structural Proteomics Facility: targets, methods and outputs. J Struct Funct Genomics, 11 (2), pp. 167-180. | Show Abstract | Read more

The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.

Schmidberger JW, James AB, Edwards R, Naismith JH, O'Hagan D. 2010. Halomethane biosynthesis: structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana. Angew Chem Int Ed Engl, 49 (21), pp. 3646-3648. | Show Abstract | Read more

It's a gas ! The structure of the halomethane-producing halo/thiocyanate methyltransferase enzyme from plants has been determined. The halide ion and the methyl group of S-adenosyl-L-methionine (SAM) were modeled into the active site (see picture; chloride: green sphere; SAM: C green, O red, S yellow, N blue), which indicated their predisposition for reaction. (Figure Presented) © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

Steiner K, Hagelueken G, Messner P, Schäffer C, Naismith JH. 2010. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus. J Mol Biol, 397 (2), pp. 436-447. | Show Abstract | Read more

Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by alpha-1,3-, alpha-1,2-, and beta-1,2-linkages. The formation of the beta-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-beta-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-beta-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition.

Schmelz S, Naismith JH. 2009. Adenylate-forming enzymes. Curr Opin Struct Biol, 19 (6), pp. 666-671. | Show Abstract | Read more

Thioesters, amides, and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture, and metal coordination that has evolved to catalyze this particular reaction.

Deng H, McMahon SA, Eustáquio AS, Moore BS, Naismith JH, O'Hagan D. 2009. Mechanistic insights into water activation in SAM hydroxide adenosyltransferase (duf-62). Chembiochem, 10 (15), pp. 2455-2459. | Show Abstract | Read more

(Figure Presented) Breaking waters: The substrate analogue S-adenosyl-L-homocysteine (SAH) was co-crystallised with SAM hydroxide adenosyltransferase from Pyrococcus horikoshii. Of the two active site water molecules one appears to be structural and the other is a candidate for nucleophilic attack, to become the C5′ adenosyl hydroxyl group. The data support a mechanism in which the Arg-Asp ion pair is important for positioning both water molecules. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

Hagelueken G, Huang H, Mainprize IL, Whitfield C, Naismith JH. 2009. Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J Mol Biol, 392 (3), pp. 678-688. | Show Abstract | Read more

Many Gram-positive and Gram-negative bacteria utilize polysaccharide surface layers called capsules to evade the immune system; consequently, the synthesis and export of the capsule are a potential therapeutic target. In Escherichia coli K-30, the integral membrane tyrosine autokinase Wzc and the cognate phosphatase Wzb have been shown to be key for both synthesis and assembly of capsular polysaccharides. In the Gram-positive bacterium Streptococcus pneumoniae, the CpsCD complex is analogous to Wzc and the phosphatase CpsB is the corresponding cognate phosphatase. The phosphatases are known to dephosphorylate their corresponding autokinases, yet despite their functional equivalence, they share no sequence homology. We present the structure of Wzb in complex with phosphate and high-resolution structures of apo-CpsB and a phosphate-complexed CpsB. We show that both proteins are active toward Wzc and thereby demonstrate that CpsB is not specific for CpsCD. CpsB is a novel enzyme and represents the first solved structure of a tyrosine phosphatase from a Gram-positive bacterium. Wzb and CpsB have completely different structures, suggesting that they must operate by very different mechanisms. Although the mechanism of Wzb can be inferred from previous studies, CpsB appears to have a tyrosine phosphatase mechanism not observed before. We propose a chemical mechanism for CpsB based on site-directed mutagenesis and structural data.

Zhu X, De Laurentis W, Leang K, Herrmann J, Ihlefeld K, van Pée K-H, Naismith JH. 2009. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J Mol Biol, 391 (1), pp. 74-85. | Show Abstract | Read more

The regioselectively controlled introduction of chlorine into organic molecules is an important biological and chemical process. This importance derives from the observation that many pharmaceutically active natural products contain a chlorine atom. Flavin-dependent halogenases are one of the principal enzyme families responsible for regioselective halogenation of natural products. Structural studies of two flavin-dependent tryptophan 7-halogenases (PrnA and RebH) have generated important insights into the chemical mechanism of halogenation by this enzyme family. These proteins comprise two modules: a flavin adenine dinucleotide (FAD)-binding module and a tryptophan-binding module. Although the 7-halogenase studies advance a hypothesis for regioselectivity, this has never been experimentally demonstrated. PyrH is a tryptophan 5-halogenase that catalyzes halogenation on tryptophan C5 position. We report the crystal structure of a tryptophan 5-halogenase (PyrH) bound to tryptophan and FAD. The FAD-binding module is essentially unchanged relative to PrnA (and RebH), and PyrH would appear to generate the same reactive species from Cl(-), O(2), and 1,5-dihydroflavin adenine dinucleotide. We report additional mutagenesis data that extend our mechanistic understanding of this process, in particular highlighting a strap region that regulates FAD binding, and may allow communication between the two modules. PyrH has a significantly different tryptophan-binding module. The data show that PyrH binds tryptophan and presents the C5 atom to the reactive chlorinating species, shielding other potential reactive sites. We have mutated residues identified by structural analysis as recognizing the tryptophan in order to confirm their role. This work establishes the method by which flavin-dependent tryptophan halogenases regioselectively control chlorine addition to tryptophan. This method would seem to be general across the superfamily.

Huang H, Hagelueken G, Whitfield C, Naismith JH. 2009. Crystallization and preliminary crystallographic analysis of the bacterial capsule assembly-regulating tyrosine phosphatases Wzb of Escherichia coli and Cps4B of Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun, 65 (Pt 8), pp. 770-772. | Show Abstract | Read more

Bacterial tyrosine kinases and their cognate phosphatases are key players in the regulation of capsule assembly and thus are important virulence determinants of these bacteria. Examples of the kinase/phosphatase pairing are found in Gram-negative bacteria such as Escherichia coli (Wzc and Wzb) and in Gram-positive bacteria such as Streptococcus pneumoniae (CpsCD and CpsB). Although Wzb and Cps4B are both predicted to dephosphorylate the C-terminal tyrosine cluster of their cognate tyrosine kinase, they appear on the basis of protein sequence to belong to quite different enzyme classes. Recombinant purified proteins Cps4B of S. pneumoniae TIGR4 and Wzb of E. coli K-30 have been crystallized. Wzb crystals belonged to space-group family P3(x)21 and diffracted to 2.7 A resolution. Crystal form I of Cps4B belonged to space-group family P4(x)2(1)2 and diffracted to 2.8 A resolution; crystal form II belonged to space group P2(1)2(1)2(1) and diffracted to 1.9 A resolution.

McMahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, White JH, Carter LG, Sanghvi B, Oke M, Walkinshaw MD et al. 2009. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res, 37 (15), pp. 4887-4897. | Show Abstract | Read more

The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha-beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.

McRobbie A-M, Carter LG, Kerou M, Liu H, McMahon SA, Johnson KA, Oke M, Naismith JH, White MF. 2009. Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity. J Mol Biol, 389 (4), pp. 661-673. | Show Abstract | Read more

DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. RecA is the sole protein responsible for this reaction in bacteria, whereas there are several Rad51 paralogs that cooperate to catalyse strand exchange in eukaryotes. All archaea have at least one (and as many as four) RadA paralog, but their function remains unclear. Herein, we show that the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions and are not UV inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large archaeal RadC subfamily of archaeal RadA paralogs, functions as an ATPase that binds tightly to single-stranded DNA. However, Sso2452 is not an active recombinase in vitro and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.

Raman MCC, Johnson KA, Yard BA, Lowther J, Carter LG, Naismith JH, Campopiano DJ. 2009. The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics. J Biol Chem, 284 (25), pp. 17328-17339. | Show Abstract | Read more

Sphingolipid biosynthesis begins with the condensation of L-serine and palmitoyl-CoA catalyzed by the PLP-dependent enzyme serine palmitoyltransferase (SPT). Mutations in human SPT cause hereditary sensory autonomic neuropathy type 1, a disease characterized by loss of feeling in extremities and severe pain. The human enzyme is a membrane-bound hetereodimer, and the most common mutations are located in the enzymatically incompetent monomer, suggesting a "dominant" or regulatory effect. The molecular basis of how these mutations perturb SPT activity is subtle and is not simply loss of activity. To further explore the structure and mechanism of SPT, we have studied the homodimeric bacterial enzyme from Sphingomonas paucimobilis. We have analyzed two mutants (N100Y and N100W) engineered to mimic the mutations seen in hereditary sensory autonomic neuropathy type 1 as well as a third mutant N100C designed to mimic the wild-type human SPT. The N100C mutant appears fully active, whereas both N100Y and N100W are significantly compromised. The structures of the holoenzymes reveal differences around the active site and in neighboring secondary structure that transmit across the dimeric interface in both N100Y and N100W. Comparison of the l-Ser external aldimine structures of both native and N100Y reveals significant differences that hinder the movement of a catalytically important Arg(378) residue into the active site. Spectroscopic analysis confirms that both N100Y and N100W mutants subtly affect the chemistry of the PLP. Furthermore, the N100Y and R378A mutants appear less able to stabilize a quinonoid intermediate. These data provide the first experimental insight into how the most common disease-associated mutations of human SPT may lead to perturbation of enzyme activity.

Ford RC, Brunkan-LaMontagne AL, Collins RF, Clarke BR, Harris R, Naismith JH, Whitfield C. 2009. Structure-function relationships of the outer membrane translocon Wza investigated by cryo-electron microscopy and mutagenesis. J Struct Biol, 166 (2), pp. 172-182. | Show Abstract | Read more

The outer membrane protein Wza, from Escherichia coli K30, forms an octameric complex that is essential for capsular polysaccharide export. Homologs of Wza are widespread in gram-negative bacterial pathogens where capsules are critical virulence determinants. Wza is unusual in that it spans the outer membrane using a barrel composed of amphipathic alpha-helices, rather than being a beta-barrel like almost all other outer membrane channels. The transmembrane helical barrel of Wza also forms the external opening to a hydrophilic translocation pathway that spans the periplasm. Here, we have probed the structure and function of the Wza complex using both cryo-electron microscopy and mutagenesis. The helical barrel structure is stable in detergent micelles under mildly acidic conditions but is destabilized at basic pH, although the overall quaternary structure is retained. Truncation of the C-terminal region that forms the helical barrel by 4 residues has no effect on the ability of Wza to oligomerize and support capsule export, but larger truncations of 18, 24 or 35 amino acids abolish its function. The bulk of the C-terminal domain is essential for the stability and assembly of the E. coli Wza complex.

Rejzek M, Sri Kannathasan V, Wing C, Preston A, Westman EL, Lam JS, Naismith JH, Maskell DJ, Field RA. 2009. Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa. Org Biomol Chem, 7 (6), pp. 1203-1210. | Show Abstract | Read more

In connection with studies on lipopolysaccharide biosynthesis in respiratory pathogens we had a need to access potential biosynthetic intermediate sugar nucleotides. Herein we report the chemical synthesis of uridine 5'-diphospho 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid (UDP-Glc-2,3-diNAcA) (1) from N-acetyl-D-glucosamine in 17 steps and approximately 9% overall yield. This compound has proved invaluable in the elucidation of biosynthetic pathways leading to the formation of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid-containing polysaccharides.

Errey JC, Mann MC, Fairhurst SA, Hill L, McNeil MR, Naismith JH, Percy JM, Whitfield C, Field RA. 2009. Sugar nucleotide recognition by Klebsiella pneumoniae UDP-D-galactopyranose mutase: fluorinated substrates, kinetics and equilibria. Org Biomol Chem, 7 (5), pp. 1009-1016. | Show Abstract | Read more

A series of selectively fluorinated and other substituted UDP-D-galactose derivatives have been evaluated as substrates for Klebsiella pneumoniae UDP-D-galactopyranose mutase. This enzyme, which catalyses the interconversion of the pyranose and furanose forms of galactose as its UDP adduct, is a prospective drug target for a variety of microbial infections. We show that none of the 2''-, 3''- or 6''-hydroxyl groups of UDP-D-galactopyranose are essential for substrate binding and turnover. However, steric factors appear to play an important role in limiting the range of substitutions that can be accommodated at C-2'' and C-6'' of the sugar nucleotide substrate. Attempts to invert the C-2'' stereochemistry from equatorial to axial, changing D-galacto- to D-talo-configuration, in an attempt to exploit the higher percentage of furanose at equilibrium in the talo-series, met with no turnover of substrate.

Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C. 2009. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev, 73 (1), pp. 155-177. | Show Abstract | Read more

Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology.

Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH et al. 2009. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nat Chem Biol, 5 (3), pp. 174-182. | Show Abstract | Read more

Bacterial pathogens need to scavenge iron from their host for growth and proliferation during infection. They have evolved several strategies to do this, one being the biosynthesis and excretion of small, high-affinity iron chelators known as siderophores. The biosynthesis of siderophores is an important area of study, not only for potential therapeutic intervention but also to illuminate new enzyme chemistries. Two general pathways for siderophore biosynthesis exist: the well-characterized nonribosomal peptide synthetase (NRPS)-dependent pathway and the NRPS-independent siderophore (NIS) pathway, which relies on a different family of sparsely investigated synthetases. Here we report structural and biochemical studies of AcsD from Pectobacterium (formerly Erwinia) chrysanthemi, an NIS synthetase involved in achromobactin biosynthesis. The structures of ATP and citrate complexes provide a mechanistic rationale for stereospecific formation of an enzyme-bound (3R)-citryladenylate, which reacts with L-serine to form a likely achromobactin precursor. AcsD is a unique acyladenylate-forming enzyme with a new fold and chemical catalysis strategy.

Liu H, Naismith JH. 2009. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr Purif, 63 (2), pp. 102-111. | Show Abstract | Read more

Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.

Hagelueken G, Ingledew WJ, Huang H, Petrovic-Stojanovska B, Whitfield C, ElMkami H, Schiemann O, Naismith JH. 2009. PELDOR spectroscopy distance fingerprinting of the octameric outer-membrane protein Wza from Escherichia coli. Angew Chem Int Ed Engl, 48 (16), pp. 2904-2906. | Show Abstract | Read more

Distance fingerprinting: Pulsed electron-electron double resonance spectroscopy (PELDOR) is applied to the octameric membrane protein complex Wza of E. coli. The data yielded a detailed distance fingerprint of its periplasmic region that compares favorably to the crystal structure. These results provide the foundation to study conformation changes from interaction with partner proteins.

Liu H, Naismith JH. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol, 8 (1), pp. 91. | Show Abstract | Read more

BACKGROUND: Mutagenesis plays an essential role in molecular biology and biochemistry. It has also been used in enzymology and protein science to generate proteins which are more tractable for biophysical techniques. The ability to quickly and specifically mutate a residue(s) in protein is important for mechanistic and functional studies. Although many site-directed mutagenesis methods have been developed, a simple, quick and multi-applicable method is still desirable. RESULTS: We have developed a site-directed plasmid mutagenesis protocol that preserved the simple one step procedure of the QuikChange site-directed mutagenesis but enhanced its efficiency and extended its capability for multi-site mutagenesis. This modified protocol used a new primer design that promoted primer-template annealing by eliminating primer dimerization and also permitted the newly synthesized DNA to be used as the template in subsequent amplification cycles. These two factors we believe are the main reasons for the enhanced amplification efficiency and for its applications in multi-site mutagenesis. CONCLUSION: Our modified protocol significantly increased the efficiency of single mutation and also allowed facile large single insertions, deletions/truncations and multiple mutations in a single experiment, an option incompatible with the standard QuikChange. Furthermore the new protocol required significantly less parental DNA which facilitated the DpnI digestion after the PCR amplification and enhanced the overall efficiency and reliability. Using our protocol, we generated single site, multiple single-site mutations and a combined insertion/deletion mutations. The results demonstrated that this new protocol imposed no additional reagent costs (beyond basic QuikChange) but increased the overall success rates.

Steiner K, Wojciechowska A, Schäffer C, Naismith JH. 2008. Purification, crystallization and preliminary crystallographic analysis of WsaF, an essential rhamnosyltransferase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 64 (Pt 12), pp. 1163-1165. | Show Abstract | Read more

The beta1,2-rhamnosyltransferase WsaF is involved in the biosynthesis of a polyrhamnan chain which is attached to the surface-layer protein from Geobacillus stearothermophilus NRS 2004/3a. The enzyme belongs to the large retaining GT4 family. To date, no structure of a rhamnosyltransferase has been published. Recombinant purified native WsaF has been crystallized, resulting in crystals that belonged to space group P2(1)2(1)2(1) with unit-cell parameters a = 50.5, b = 56.1, c = 276.8 A and diffracted to 3.0 A resolution. Selenomethionine-variant WsaF crystallized in space group P2(1) with unit-cell parameters a = 75.9, b = 75.5, c = 78.1 A and diffracted to 2.3 A resolution.

McMahon SA, Oke M, Liu H, Johnson KA, Carter L, Kadi N, White MF, Challis GL, Naismith JH. 2008. Purification, crystallization and data collection of Pectobacterium chrysanthemi AcsD, a type A siderophore synthetase. Acta Crystallogr Sect F Struct Biol Cryst Commun, 64 (Pt 11), pp. 1052-1055. | Show Abstract | Read more

AcsD, a type A siderophore synthetase with a molecular weight of 71 140 Da from Pectobacterium chrysanthemi, has been expressed, purified and crystallized at 293 K. The protein crystallized in the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 80.3, b = 95.7, c = 161.1 A, alpha = beta = gamma = 90 degrees . Systematic absences were consistent with space group P2(1)2(1)2(1). A complete data set has been collected to 2.25 A resolution on BM14 at the ESRF. Consideration of the likely solvent content suggested that the asymmetric unit contained two molecules. Gel-filtration experiments indicated that the protein was a dimer, although self-rotation analyses did not detect a convincing twofold symmetry axis in the asymmetric unit. The protein has no convincing sequence match to any known structure and thus solution is likely to require experimental phasing.

Davies GJ, Naismith JH. 2008. Chemistry's prodigal child: enzyme mechanism. Curr Opin Chem Biol, 12 (5), pp. 529-531. | Read more

Wang W, Black SS, Edwards MD, Miller S, Morrison EL, Bartlett W, Dong C, Naismith JH, Booth IR. 2008. The structure of an open form of an E. coli mechanosensitive channel at 3.45 A resolution. Science, 321 (5893), pp. 1179-1183. | Show Abstract | Read more

How ion channels are gated to regulate ion flux in and out of cells is the subject of intense interest. The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. We present a 3.45 angstrom-resolution structure for the MscS channel in an open conformation. This structure has a pore diameter of approximately 13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation. Support for this mechanism is provided by single-channel analysis of mutants with altered gating characteristics.

Wang W, Dong C, McNeil M, Kaur D, Mahapatra S, Crick DC, Naismith JH. 2008. The structural basis of chain length control in Rv1086. J Mol Biol, 381 (1), pp. 129-140. | Show Abstract | Read more

In Mycobacterium tuberculosis, two related Z-prenyl diphosphate synthases, E,Z-farnesyl diphosphate synthase (Rv1086) and decaprenyl diphosphate synthase (Rv2361c), work in series to synthesize decaprenyl phosphate (C(50)) from isopentenyl diphosphate and E-geranyl diphosphate. Decaprenyl phosphate plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan; thus, its synthesis has attracted considerable interest as a potential therapeutic target. Rv1086 is a unique prenyl diphosphate synthase in that it adds only one isoprene unit to geranyl diphosphate, generating the 15-carbon product (E,Z-farnesyl diphosphate). Rv2361c then adds a further seven isoprene units to E,Z-farnesyl diphosphate in a processive manner to generate the 50-carbon prenyl diphosphate, which is then dephosphorylated to generate a carrier for activated sugars. The molecular basis for chain-length discrimination by Rv1086 during synthesis is unknown. We also report the structure of apo Rv1086 with citronellyl diphosphate bound and with the product mimic E,E-farnesyl diphosphate bound. We report the structures of Rv2361c in the apo form, with isopentenyl diphosphate bound and with a substrate analogue, citronellyl diphosphate. The structures confirm the enzymes are very closely related. Detailed comparison reveals structural differences that account for chain-length control in Rv1086. We have tested this hypothesis and have identified a double mutant of Rv1086 that makes a range of longer lipid chains.

Whitfield C, Naismith JH. 2008. Periplasmic export machines for outer membrane assembly. Curr Opin Struct Biol, 18 (4), pp. 466-474. | Show Abstract | Read more

The cell envelope of Gram-negative bacteria protects the organism from environmental stresses, components of the innate immune response, and the actions of other antagonistic molecules. However, the complexity of the cell envelope dictated by these protective roles creates a significant challenge for assembly of the outer membrane. Extensive research has focused on the export and assembly of outer membrane proteins and there is continuing progress in this area. By contrast, knowledge of the export and assembly of complex glycoconjugates in the outer membrane has been limited until recently. New structural and biochemical information identifies an envelope-spanning molecular scaffold for the export of group 1 capsular polysaccharides and provides insight into a complex molecular machine.

Overton IM, van Niekerk CAJ, Carter LG, Dawson A, Martin DMA, Cameron S, McMahon SA, White MF, Hunter WN, Naismith JH, Barton GJ. 2008. TarO: a target optimisation system for structural biology. Nucleic Acids Res, 36 (Web Server issue), pp. W190-W196. | Show Abstract | Read more

TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC 'Structural Proteomics of Rational Targets' initiative.

Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie A-M, Brown SE, Naismith JH, White MF. 2008. Structure of the DNA repair helicase XPD. Cell, 133 (5), pp. 801-812. | Show Abstract | Read more

The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalyzing DNA duplex opening localized to the transcription start site or site of DNA damage, respectively. XPD has a 5' to 3' polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigmentosum, trichothiodystrophy, and Cockayne's syndrome, characterized by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 A crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans.

Fairhead M, Johnson KA, Kowatz T, McMahon SA, Carter LG, Oke M, Liu H, Naismith JH, van der Walle CF. 2008. Crystal structure and silica condensing activities of silicatein alpha-cathepsin L chimeras. Chem Commun (Camb), (15), pp. 1765-1767. | Show Abstract | Read more

Cathepsin L mutants with the ability to condense silica from solution have been generated and a 1.5 A crystal structure of one of these chimeras allows us to rationalise the catalytic mechanism of silicic acid condensation.

Richards JD, Johnson KA, Liu H, McRobbie A-M, McMahon S, Oke M, Carter L, Naismith JH, White MF. 2008. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem, 283 (8), pp. 5118-5126. | Show Abstract | Read more

Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.

Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ. 2008. Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg Med Chem, 16 (2), pp. 710-720. | Show Abstract | Read more

2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.

Flecks S, Patallo EP, Zhu X, Ernyei AJ, Seifert G, Schneider A, Dong C, Naismith JH, van Pée K-H. 2008. New insights into the mechanism of enzymatic chlorination of tryptophan. Angew Chem Int Ed Engl, 47 (49), pp. 9533-9536. | Show Abstract | Read more

(Chemical Equation Presented) It takes two: Both a lysine and a glutamate residue in the active site of tryptophan halogenase are essential for its chlorination activity. A mechanism for the regioselective enzymatic chlorination of tryptophan involving both amino acids is suggested (see scheme). © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

Oke M, Ching RTY, Carter LG, Johnson KA, Liu H, McMahon SA, White MF, Bloch C, Botting CH, Walsh MA et al. 2008. Unusual chromophore and cross-links in ranasmurfin: a blue protein from the foam nests of a tropical frog. Angew Chem Int Ed Engl, 47 (41), pp. 7853-7856. | Show Abstract | Read more

A smurfin' good structure: The 1.16 Å resolution crystal structure of ranasmurfin, a blue protein extracted from the foam nests of the Malaysian tree frog Polypedates leucomystax, reveals unusual post-translational chemical modifications. The chromophore involves an extended Zn-coordinated four-residue (Lys-Tyr-Tyr-Lys) inter-subunit cross-link of a kind not previously reported. (Figure Presented). © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

De Laurentis W, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS, Chapman SK, van Pee K-H, Naismith JH. 2007. The Second Enzyme in Pyrrolnitrin Biosynthetic Pathway Is Related to the Heme-Dependent Dioxygenase Superfamily, Biochemistry, 46 (50), pp. 14733-14733. | Read more

De Laurentis W, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS, Chapman SK, van Pee K-H, Naismith JH. 2007. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily (vol 46, pg 12393, 2007) BIOCHEMISTRY, 46 (50), pp. 14733-14733. | Read more

Zhu X, Robinson DA, McEwan AR, O'Hagan D, Naismith JH. 2007. Mechanism of enzymatic fluorination in Streptomyces cattleya. J Am Chem Soc, 129 (47), pp. 14597-14604. | Show Abstract | Read more

Recently a fluorination enzyme was identified and isolated from Streptomyces cattleya, as the first committed step on the metabolic pathway to the fluorinated metabolites, fluoroacetate and 4-fluorothreonine. This enzyme, 5'-fluoro-5'-deoxy adenosine synthetase (FDAS), has been shown to catalyze C-F bond formation by nucleophilic attack of fluoride ion to S-adenosyl-l-methionine (SAM) with the concomitant displacement of l-methionine to generate 5'-fluoro-5'-deoxy adenosine (5'-FDA). Although the structures of FDAS bound to both SAM and products have been solved, the molecular mechanism remained to be elucidated. We now report site-directed mutagenesis studies, structural analyses, and isothermal calorimetry (ITC) experiments. The data establish the key residues required for catalysis and the order of substrate binding. Fluoride ion is not readily distinguished from water by protein X-ray crystallography; however, using chloride ion (also a substrate) with a mutant of low activity has enabled the halide ion to be located in nonproductive co-complexes with SAH and SAM. The kinetic data suggest the positively charged sulfur of SAM is a key requirement in stabilizing the transition state. We propose a molecular mechanism for FDAS in which fluoride weakly associates with the enzyme exchanging two water molecules for protein ligation. The binding of SAM expels remaining water associated with fluoride ion and traps the ion in a pocket positioned to react with SAM, generating l-methionine and 5'-FDA. l-methionine then dissociates from the enzyme followed by 5'-FDA.

De Laurentis W, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS, Chapman SK, van Pee K-H, Naismith JH. 2007. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily. Biochemistry, 46 (43), pp. 12393-12404. | Show Abstract | Read more

Pyrrolnitrin is a commonly used and clinically effective treatment for fungal infections and provides the structural basis for the more widely used fludioxinil. The pyrrolnitrin biosynthetic pathway consists of four chemical steps, the second of which is the rearrangement of 7-chloro-tryptophan by the enzyme PrnB, a reaction that is so far unprecedented in biochemistry. When expressed in Pseudomonas fluorescens, PrnB is red in color due to the fact that it contains 1 mol of heme b per mole of protein. The crystal structure unexpectedly establishes PrnB as a member of the heme-dependent dioxygenase superfamily with significant structural but not sequence homology to the two-domain indoleamine 2,3-dioxygenase enzyme (IDO). The heme-binding domain is also structurally similar to that of tryptophan 2,3-dioxygenase (TDO). Here we report the binary complex structures of PrnB with d- and l-tryptophan and d- and l-7-chloro-tryptophan. The structures identify a common hydrophobic pocket for the indole ring but exhibit unusual heme ligation and substrate binding when compared with that observed in the TDO crystal structures. Our solution studies support the heme ligation observed in the crystal structures. Purification of the hexahistidine-tagged PrnB yields homogeneous protein that only displays in vitro activity with 7-chloro-l-tryptophan after reactivation with crude extract from the host strain, suggesting that an as yet unknown cofactor is required for activity. Mutation of the proximal heme ligand results, not surprisingly, in inactive enzyme. Redox titrations show that PrnB displays a significantly different reduction potential to that of IDO or TDO, indicating possible differences in the PrnB catalytic cycle. This is confirmed by the absence of tryptophan dioxygenase activity in PrnB, although a stable oxyferrous adduct (which is the first intermediate in the TDO/IDO catalytic cycle) can be generated. We propose that PrnB shares a key catalytic step with TDO and IDO, generation of a tryptophan hydroperoxide intermediate, although this species suffers a different fate in PrnB, leading to the eventual formation of the product, monodechloroaminopyrrolnitrin.

Liu H, Woznica K, Catton G, Crawford A, Botting N, Naismith JH. 2007. Structural and kinetic characterization of quinolinate phosphoribosyltransferase (hQPRTase) from homo sapiens. J Mol Biol, 373 (3), pp. 755-763. | Show Abstract | Read more

Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other.

Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M, Liu H, McMahon SA, Oke M, Puech D, Barton GJ et al. 2007. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol, 370 (5), pp. 870-886. | Show Abstract | Read more

Sphingolipid biosynthesis commences with the condensation of L-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS). This reaction is catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT; EC 2.3.1.50), which is a membrane-bound heterodimer (SPT1/SPT2) in eukaryotes such as humans and yeast and a cytoplasmic homodimer in the Gram-negative bacterium Sphingomonas paucimobilis. Unusually, the outer membrane of S. paucimobilis contains glycosphingolipid (GSL) instead of lipopolysaccharide (LPS), and SPT catalyses the first step of the GSL biosynthetic pathway in this organism. We report here the crystal structure of the holo-form of S. paucimobilis SPT at 1.3 A resolution. The enzyme is a symmetrical homodimer with two active sites and a monomeric tertiary structure consisting of three domains. The PLP cofactor is bound covalently to a lysine residue (Lys265) as an internal aldimine/Schiff base and the active site is composed of residues from both subunits, located at the bottom of a deep cleft. Models of the human SPT1/SPT2 heterodimer were generated from the bacterial structure by bioinformatics analysis. Mutations in the human SPT1-encoding subunit have been shown to cause a neuropathological disease known as hereditary sensory and autonomic neuropathy type I (HSAN1). Our models provide an understanding of how these mutations may affect the activity of the enzyme.

Seetharamappa J, Oke M, Liu H, McMahon SA, Johnson KA, Carter L, Dorward M, Zawadzki M, Overton IM, van Niekirk CAJ et al. 2007. Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase. Acta Crystallogr Sect F Struct Biol Cryst Commun, 63 (Pt 6), pp. 488-491. | Show Abstract | Read more

Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 A, alpha = 87.2, beta = 81.2, gamma = 68.4 degrees . A complete data set has been collected to 2.3 A resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model.

Seetharamappa J, Oke M, Liu H, McMahon SA, Johnson KA, Carter L, Dorward M, Zawadzki M, Overton IM, van Niekirk CAJ et al. 2007. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5'-phosphate-dependent aminotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun, 63 (Pt 5), pp. 452-456. | Show Abstract | Read more

Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5'-phosphate-dependent aminotransferase with a molecular weight of 48,168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 A, alpha = beta = gamma = 90 degrees. Analysis of the systematic absences along the three principal axes indicated the space group to be P2(1)2(1)2(1). A complete data set was collected to 2.5 A resolution.

Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH. 2007. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci U S A, 104 (7), pp. 2390-2395. | Show Abstract | Read more

Capsular polysaccharides (CPSs) are essential virulence determinants of many pathogenic bacteria. Escherichia coli group 1 CPSs provide paradigms for widespread surface polysaccharide assembly systems in Gram-negative bacteria. In these systems, complex carbohydrate polymers must be exported across the periplasm and outer membrane to the cell surface. Group 1 CPS export requires oligomers of the outer membrane protein, Wza, for translocation across the outer membrane. Assembly also depends on Wzc, an inner membrane tyrosine autokinase known to regulate export and synthesis of group 1 CPS. Here, we provide a structural view of a complex comprising Wzc and Wza that spans the periplasm, connecting the inner and outer membranes. Examination of transmembrane sections of the complex suggests that the periplasm is compressed at the site of complex formation. An important feature of CPS production is the coupling of steps involved in biosynthesis and export. We propose that the Wza-Wzc complex provides the structural and regulatory core of a larger macromolecular machine. We suggest a mechanism by which CPS may move from the periplasm through the outer membrane.

Dong C, Major LL, Srikannathasan V, Errey JC, Giraud M-F, Lam JS, Graninger M, Messner P, McNeil MR, Field RA et al. 2007. RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J Mol Biol, 365 (1), pp. 146-159. | Show Abstract | Read more

The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.

Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT. 2006. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol, 13 (12), pp. 1069-1077. | Show Abstract | Read more

Small ubiquitin-like modifier (SUMO)-specific protease SENP1 processes SUMO-1, SUMO-2 and SUMO-3 to mature forms and deconjugates them from modified proteins. To establish the proteolytic mechanism, we determined structures of catalytically inactive SENP1 bound to SUMO-1-modified RanGAP1 and to unprocessed SUMO-1. In each case, the scissile peptide bond is kinked at a right angle to the C-terminal tail of SUMO-1 and has the cis configuration of the amide nitrogens. SENP1 preferentially processes SUMO-1 over SUMO-2, but binding thermodynamics of full-length SUMO-1 and SUMO-2 to SENP1 and K(m) values for processing are very similar. However, k(cat) values differ by 50-fold. Thus, discrimination between unprocessed SUMO-1 and SUMO-2 by SENP1 is based on a catalytic step rather than substrate binding and is likely to reflect differences in the ability of SENP1 to correctly orientate the scissile bonds in SUMO-1 and SUMO-2.

Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH. 2006. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature, 444 (7116), pp. 226-229. | Show Abstract | Read more

Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system. EPSs have critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right. Here we describe the 2.26 A resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel alpha-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.

De Laurentis W, Leang K, Hahn K, Podemski B, Adam A, Kroschwald S, Carter LG, van Pee K-H, Naismith JH. 2006. Preliminary crystallographic characterization of PrnB, the second enzyme in the pyrrolnitrin biosynthetic pathway. Acta Crystallogr Sect F Struct Biol Cryst Commun, 62 (Pt 11), pp. 1134-1137. | Show Abstract | Read more

Pyrrolnitrin is the active ingredient of drugs for the treatment of superficial fungal infections and was used as a lead structure for the development of fludioxonil. It is an effective agent for plant diseases caused by the fungal pathogen Rhizoctonia solani. Pyrrolnitrin is made in four steps, the second of which, catalyzed by PrnB, is a novel chemical rearrangement of 7-chlorotryptophan. PrnB was overproduced in Pseudomonas fluorescens (BL915) and well diffracting crystals were obtained of a triple cysteine-to-serine mutant by sitting-drop vapour diffusion. Crystals grown in the presence of L-7-chlorotryptophan, D-tryptophan and L-tryptophan are reported. Data sets for each are reported with high-resolution limits of 2.0, 1.75 and 1.75 A, respectively. Two crystals (PrnB in the presence of D-tryptophan and L-7-chlorotryptophan) belong to space group C2 with similar unit-cell parameters (a = 68.6, b = 79.5, c = 92.7 A, alpha = gamma = 90.0, beta = 103.8 degrees). Crystals grown in the presence of L-tryptophan belong to space group C222(1) and have unit-cell parameters a = 67.7, b = 80.1, c = 129.5 A. All crystals contain a monomer in the asymmetric unit.

McMahon SA, Walsh MA, Ching RTY, Carter LG, Dorward M, Johnson KA, Liu H, Oke M, Bloch C, Kennedy MW et al. 2006. Crystallization of Ranasmurfin, a blue-coloured protein from Polypedates leucomystax. Acta Crystallogr Sect F Struct Biol Cryst Commun, 62 (Pt 11), pp. 1124-1126. | Show Abstract | Read more

Ranasmurfin, a previously uncharacterized approximately 13 kDa blue protein found in the nests of the frog Polypedates leucomystax, has been purified and crystallized. The crystals are an intense blue colour and diffract to 1.51 A with P2(1) symmetry and unit-cell parameters a = 40.9, b = 59.9, c = 45.0 A, beta = 93.3 degrees . Self-rotation function analysis indicates the presence of a dimer in the asymmetric unit. Biochemical data suggest that the blue colour of the protein is related to dimer formation. Sequence data for the protein are incomplete, but thus far have identified no model for molecular replacement. A fluorescence scan shows a peak at 9.676 keV, indicating that the protein binds zinc and suggesting a route for structure solution.

Cited:

52

Scopus

Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei AJ, Dong C, Naismith JH, van Pee K-H. 2006. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis BIOCATALYSIS AND BIOTRANSFORMATION, 24 (6), pp. 401-408. | Show Abstract | Read more

Regioselective halogenation of electron rich substrates is catalysed by flavin-dependent halogenases. Thienodolin produced by Streptomyces albogriseolus contains a chlorine atom in the 6-position of the indole ring system and is believed to be derived from tryptophan. Using the gene of the tryptophan 7-halogenase (PrnA) from the pyrrolnitrin biosynthetic gene cluster the gene for a tryptophan 6-halogenase was cloned, sequenced and heterologously overexpressed in Pseudomonas strains. In vitro activity of the purified enzyme could only be shown in a two-component enzyme system consisting of the halogenase, a flavin reductase, NADH, FAD and halide ions. The enzyme catalyses the regioselective chlorination and bromination of l- and d-tryptophan. In its native form the enzyme is probably a homodimer with a relative molecular mass of the subunits of 63 600 (including the His-tag). Transformation of the pyrrolnitrin producer Pseudomonas chlororaphis ACN with a plasmid containing the tryptophan 6-halogenase gene lead to the formation of the new aminopyrrolnitrin derivative 3-(2′-amino-4′-chlorophenyl) pyrrole.

Williams GJ, Johnson K, Rudolf J, McMahon SA, Carter L, Oke M, Liu H, Taylor GL, White MF, Naismith JH. 2006. Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 62 (Pt 10), pp. 944-948. | Show Abstract | Read more

PCNA is a ring-shaped protein that encircles DNA, providing a platform for the association of a wide variety of DNA-processing enzymes that utilize the PCNA sliding clamp to maintain proximity to their DNA substrates. PCNA is a homotrimer in eukaryotes, but a heterotrimer in crenarchaea such as Sulfolobus solfataricus. The three proteins are SsoPCNA1 (249 residues), SsoPCNA2 (245 residues) and SsoPCNA3 (259 residues). The heterotrimeric protein crystallizes in space group P2(1), with unit-cell parameters a = 44.8, b = 78.8, c = 125.6 A, beta = 100.5 degrees. The crystal structure of this heterotrimeric PCNA molecule has been solved using molecular replacement. The resulting structure to 2.3 A sheds light on the differential stabilities of the interactions observed between the three subunits and the specificity of individual subunits for partner proteins.

Naismith JH. 2006. Inferring the chemical mechanism from structures of enzymes. Chem Soc Rev, 35 (9), pp. 763-770. | Show Abstract | Read more

Chemistry has once again embraced the study of enzyme mechanism as a core discipline. Chemists are uniquely able to contribute to the analysis of enzymes through their understanding of the reactivity of atoms. In this tutorial review for the Corday-Morgan medal, I will concentrate on the work from my lab over the past six years. I discuss enzymes which transform carbohydrates and incorporate halogens. The tutorial review will emphasise the strengths and limitations of structural biology as a means to deducing the chemical mechanism.

Beis K, Whitfield C, Booth I, Naismith JH. 2006. Two-step purification of outer membrane proteins. Int J Biol Macromol, 39 (1-3), pp. 10-14. | Show Abstract | Read more

Here, we describe a simple and efficient method for the purification of Escherichia coli outer membrane proteins. We have tested this protocol for the purification of Wza and Osmoporin C (OmpC) proteins. Both proteins were purified to homogeneity, in two steps, by anion exchange and size exclusion chromatography with a final yield of 92.5 mg for the Wza protein and 291.5 mg for the OmpC protein. The purity of the samples was judged by electrophoretic analysis, mass spectrometry, single particle analysis, three-dimensional (3D) crystallisation and X-ray diffraction.

Shen LN, Dong C, Liu H, Naismith JH, Hay RT. 2006. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J, 397 (2), pp. 279-288. | Show Abstract | Read more

The SUMO (small ubiquitin-like modifier)-specific protease SENP1 (sentrin-specific protease 1) can process the three forms of SUMO to their mature forms and deconjugate SUMO from modified substrates. It has been demonstrated previously that SENP1 processed SUMO-1 more efficiently than SUMO-2, but displayed little difference in its ability to deconjugate the different SUMO paralogues from modified substrates. To determine the basis for this substrate specificity, we have determined the crystal structure of SENP1 in isolation and in a transition-state complex with SUMO-2. The interface between SUMO-2 and SENP1 has a relatively poor complementarity, and most of the recognition is determined by interaction between the conserved C-terminus of SUMO-2 and the cleft in the protease. Although SENP1 is rather similar in structure to the related protease SENP2, these proteases have different SUMO-processing activities. Electrostatic analysis of SENP1 in the region where the C-terminal peptide, removed during maturation, would project indicates that it is the electrostatic complementarity between this region of SENP1 and the C-terminal peptides of the various SUMO paralogues that mediates selectivity.

Fullerton SWB, Griffiths JS, Merkel AB, Cheriyan M, Wymer NJ, Hutchins MJ, Fierke CA, Toone EJ, Naismith JH. 2006. Mechanism of the Class I KDPG aldolase. Bioorg Med Chem, 14 (9), pp. 3002-3010. | Show Abstract | Read more

In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.

Cobb SL, Deng H, McEwan AR, Naismith JH, O'Hagan D, Robinson DA. 2006. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates. Org Biomol Chem, 4 (8), pp. 1458-1460. | Show Abstract | Read more

The fluorinase enzyme from Streptomyces cattleya displays an unusual ability in biocatalysis in that it forms a C-F bond. We now report that the enzyme will accept 2'-deoxyadenosine in place of adenosine substrates, and structural evidence reveals a reorganisation in hydrogen bonding to accommodate this substrate series. It emerges from this study that the enzyme does not require a planar ribose conformation of the substrate to catalyse C-F bond formation.

McEwan AR, Liu H, Oke M, Carter L, Powers H, Dorward M, McMahon SA, White MF, Naismith JH. 2006. Overexpression, purification, crystallization and data collection of Sulfolobus solfataricus Sso6206, a novel highly conserved protein. Acta Crystallogr Sect F Struct Biol Cryst Commun, 62 (Pt 3), pp. 228-230. | Show Abstract | Read more

Sso6206, a 10.5 kDa protein from Sulfolobus solfataricus, has been overexpressed, purified and crystallized. The protein crystallizes in space group P6(1/5)22, with unit-cell parameters a = b = 157.8, c = 307.3 A. The crystals are hexagonal bipyramids and a data set has been collected to 2.4 A resolution. Molecular replacement cannot be attempted as no convincing model can be identified. Crystals of selenomethionine-variant protein have not yet been obtained. Interestingly, crystal packing, gel filtration and mass spectrometry all suggest the native protein forms a multi-subunit oligomer consisting of >9 subunits.

Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C. 2006. Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem, 281 (4), pp. 2144-2150. | Show Abstract | Read more

The K antigenic capsular polysaccharide forms a structural layer, the capsule, on the surfaces of Escherichia coli cells. The capsule provides an important protective covering that helps protect encapsulated bacteria from host immune defenses. The assembly and translocation of the capsule requires proteins in the inner and outer membranes. The inner membrane protein Wzc is a tyrosine autokinase that plays an essential role in what is believed to be a coordinated biosynthesis and secretion process. Mutants lacking Wzc can form K antigen oligosaccharides but are unable to polymerize high molecular weight capsular polymers. Wzc homologs have been identified in exopolymer biosynthesis systems in many different Gram-negative and -positive bacteria. Using single particle averaging on cryo-negatively stained samples, we have produced the first three-dimensional structure of this type of membrane protein in its phosphorylated state at approximately 14 A resolution. Perfluoro-octanoate-PAGE analysis of detergent-solubilized oligomeric Wzc and symmetry analysis of the transmission electron microscopy data clearly demonstrated that Wzc forms a tetrameric complex with C4 rotational symmetry. Viewed from the top of the complex, the oligomer is square with a diameter of approximately 100 A and can be divided into four separate densities. From the side, Wzc is approximately 110 A high and has a distinctive appearance similar to an extracted molar tooth. The upper "crown" region is approximately 55 A high and forms a continuous ring of density. Four unconnected "roots" ( approximately 65 A high) emerge from the underside of the crown. We propose that the crown is formed by protein-protein contacts from the four Wzc periplasmic domains, while each root represents an individual cytoplasmic tyrosine autokinase domain.

Deng H, Cobb SL, McEwan AR, McGlinchey RP, Naismith JH, O'Hagan D, Robinson DA, Spencer JB. 2006. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew Chem Int Ed Engl, 45 (5), pp. 759-762. | Show Abstract | Read more

(Chemical Equation Presented) Choices choices: The fluorinase enzyme from Streptomyces cattleya (catalyzes the formation of a C-F bond from fluoride ions) also has the capacity to utilize a chloride ion although it has a clear preference for the fluoride ion. The enzyme mediates a nucleophilic chlorination reaction, which is an unusual mechanism for enzymatic chlorination. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.

Major LL, Wolucka BA, Naismith JH. 2005. Structure and function of GDP-mannose-3',5'-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc, 127 (51), pp. 18309-18320. | Show Abstract | Read more

GDP-mannose-3',5'-epimerase (GME) from Arabidopsis thaliana catalyzes the epimerization of both the 3' and 5' positions of GDP-alpha-D-mannose to yield GDP-beta-L-galactose. Production of the C5' epimer of GDP-alpha-D-mannose, GDP-beta-L-gulose, has also been reported. The reaction occurs as part of vitamin C biosynthesis in plants. We have determined structures of complexes of GME with GDP-alpha-D-mannose, GDP-beta-L-galactose, and a mixture of GDP-beta-L-gulose with GDP-beta-L-4-keto-gulose to resolutions varying from 2.0 to 1.4 A. The enzyme has the classical extended short-chain dehydratase/reductase (SDR) fold. We have confirmed that GME establishes an equilibrium between two products, GDP-beta-L-galactose and GDP-beta-L-gulose. The reaction proceeds by C4' oxidation of GDP-alpha-D-mannose followed by epimerization of the C5' position to give GDP-beta-L-4-keto-gulose. This intermediate is either reduced to give GDP-beta-L-gulose or the C3' position is epimerized to give GDP-beta-L-4-keto-galactose, then C4' is reduced to GDP-beta-L-galactose. The combination of oxidation, epimerization, and reduction in a single active site is unusual. Structural analysis coupled to site-directed mutagenesis suggests C145 and K217 as the acid/base pair responsible for both epimerizations. On the basis of the structure of the GDP-beta-L-gulose/GDP-beta-L-4-keto-gulose co-complex, we predict that a ring flip occurs during the first epimerization and that a boat intermediate is likely for the second epimerization. Comparison of GME with other SDR enzymes known to abstract a protein alpha to the keto function of a carbohydrate identifies key common features.

Dong C, Flecks S, Unversucht S, Haupt C, van Pée K-H, Naismith JH. 2005. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science, 309 (5744), pp. 2216-2219. | Show Abstract | Read more

Chlorinated natural products include vancomycin and cryptophycin A. Their biosynthesis involves regioselective chlorination by flavin-dependent halogenases. We report the structural characterization of tryptophan 7-halogenase (PrnA), which regioselectively chlorinates tryptophan. Tryptophan and flavin adenine dinucleotide (FAD) are separated by a 10 angstrom-long tunnel and bound by distinct enzyme modules. The FAD module is conserved in halogenases and is related to flavin-dependent monooxygenases. On the basis of biochemical studies, crystal structures, and by analogy with monooxygenases, we predict that FADH2 reacts with O2 to make peroxyflavin, which is decomposed by Cl-. The resulting HOCl is guided through the tunnel to tryptophan, where it is activated to participate in electrophilic aromatic substitution.

Naismith J. 2005. Membrane integrity - direct turbidity measurement of filtrate from MF membrane modules at an operating potable water treatment plant DESALINATION, 179 (1-3), pp. 25-30. | Show Abstract | Read more

The San Patricio Municipal Water District is a wholesale supplier of water to cities and industry in south Texas, USA, with nine municipal and six major industrial customers. It operates three water treatment plants. The newest, Plant "C", is an MF plant rated at 7.8 mgd using Pall/Asahi PVDF membrane modules. The plant has been in continuous operation since January 2000. In June 2004 one rack (50 modules) was equipped with the Hach Company Medusa system for determining the turbidity of filtrate exiting each module. Turbidities are determined using a laser turbidimeter and multiplexing via fiber optic cables to detectors at each module. At the same time a pilot plant, one full-scale MF module is being used to define the sensitivity of the Medusa system in terms of pathogenic log removal. Membrane integrity in the pilot plant module has been intentionally destroyed and then challenged with 2.9 micron polystyrene beads as a surrogate for Cryptosporidium oocysts. The regulatory agency, the Texas Commission on Environmental Quality, observed the procedures. It is hoped to gain regulatory recognition of the Medusa system as a technique and as an operationally viable method for direct product turbidity measurement at the module level. The paper presents the details of the projects and experience gained from the pilot plant and full-scale plant operation. Tentative conclusions are reported. © 2005 Elsevier B.V. All rights reserved.

Williams GJ, Breazeale SD, Raetz CRH, Naismith JH. 2005. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. J Biol Chem, 280 (24), pp. 23000-23008. | Show Abstract | Read more

Modification of the lipid A moiety of lipopolysaccharide by the addition of the sugar 4-amino-4-deoxy-L-arabinose (L-Ara4N) is a strategy adopted by pathogenic Gram-negative bacteria to evade cationic antimicrobial peptides produced by the innate immune system. L-Ara4N biosynthesis is therefore a potential anti-infective target, because inhibiting its synthesis would render certain pathogens more sensitive to the immune system. The bifunctional enzyme ArnA, which is required for L-Ara4N biosynthesis, catalyzes the NAD(+)-dependent oxidative decarboxylation of UDP-glucuronic acid to generate a UDP-4'-keto-pentose sugar and also catalyzes transfer of a formyl group from N-10-formyltetrahydrofolate to the 4'-amine of UDP-L-Ara4N. We now report the crystal structure of the N-terminal formyltransferase domain in a complex with uridine monophosphate and N-5-formyltetrahydrofolate. Using this structure, we identify the active site of formyltransfer in ArnA, including the key catalytic residues Asn(102), His(104), and Asp(140). Additionally, we have shown that residues Ser(433) and Glu(434) of the decarboxylase domain are required for the oxidative decarboxylation of UDP-GlcUA. An E434Q mutant is inactive, suggesting that chemical rather than steric properties of this residue are crucial in the decarboxylation reaction. Our data suggest that the decarboxylase domain catalyzes both hydride abstraction (oxidation) from the C-4' position and the subsequent decarboxylation.

Beis K, Srikannathasan V, Liu H, Fullerton SWB, Bamford VA, Sanders DAR, Whitfield C, McNeil MR, Naismith JH. 2005. Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state. J Mol Biol, 348 (4), pp. 971-982. | Show Abstract | Read more

Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure.

Shen L-N, Liu H, Dong C, Xirodimas D, Naismith JH, Hay RT. 2005. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J, 24 (7), pp. 1341-1351. | Show Abstract | Read more

NEDD8 (neural precursor cell expressed developmentally downregulated gene 8)-specific protease NEDP1 processes preNEDD8 to its mature form and deconjugates NEDD8 from substrates such as p53 and cullins. Although NEDD8 and ubiquitin are highly related in sequence and structure, their attachment to a protein leads to different biological effects. It is therefore critical that NEDP1 discriminates between NEDD8 and ubiquitin, and this requires remarkable precision in molecular recognition. To determine the basis of this specificity, we have determined the crystal structure of NEDP1 in isolation and in a transition state complex with NEDD8. This reveals that NEDP1 is a cysteine protease of the Ulp family. Binding of NEDD8 induces a dramatic conformational change in a flexible loop that swings over the C-terminus of NEDD8 locking it into an extended beta-structure optimal for catalysis. Structural, mutational and biochemical studies have identified key residues involved in molecular recognition. A single-residue difference in the C-terminus of NEDD8 and ubiquitin contributes significantly to the ability of NEDP1 to discriminate between them. In vivo analysis indicates that NEDP1 mutants perturb deNEDDylation of the tumour suppressor p53.

Naismith JH. 2005. CASE closed CHEMISTRY WORLD, 2 (1), pp. 30-30.

Challis GL, Naismith JH. 2004. Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol, 14 (6), pp. 748-756. | Show Abstract | Read more

Small peptides have powerful biological activities ranging from antibiotic to immune suppression. These peptides are synthesized by non-ribosomal peptide synthetases (NRPS). Structural understanding of NRPS took a huge leap forward in 2002; this information has led to several detailed biochemical studies and further structural studies. NRPS are complex molecular machines composed of multiple modules and each module contains several autonomously folded catalytic domains. Structural studies have largely focused on individual domains, isolated from the context of the multienzyme. Biochemical studies have looked at individual domains, isolated whole modules and intact NRPS, and the combined data begin to allow us to visualize the process of peptide assembly by NRPS.

Naismith JH. 2004. Disturbing thoughts CHEMICAL & ENGINEERING NEWS, 82 (45), pp. 9-10.

Naismith JH. 2004. Chemical insights from structural studies of enzymes. Biochem Soc Trans, 32 (Pt 5), pp. 647-654. | Show Abstract | Read more

The rapid progress in structural and molecular biology over the past fifteen years has allowed chemists to access the structures of enzymes, of their complexes and of mutants. This wealth of structural information has led to a surge in the interest in enzymes as elegant chemical catalysts. Enzymology is a distinguished field and has been making vital contributions to medicine and basic science long before structural biology. This review for the Colworth Medal Lecture discusses work from the author's laboratory. This work has been carried out in collaboration with many other laboratories. The work has mapped out the chemical mechanisms and structures of interesting novel enzymes. The review tries to highlight the interesting chemical aspects of the mechanisms involved and how structural analysis has provided a detailed insight. The review focuses on carbohydrate-processing pathways in bacteria, and includes some recent data on an integral membrane protein.

Dong C, Kotzsch A, Dorward M, van Pée KH, Naismith JH. 2004. Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr, 60 (Pt 8), pp. 1438-1440. | Show Abstract | Read more

Chlorination of natural products is often required for their biological activity; notable examples include vancomycin, the last-ditch antibiotic. It is now known that many chlorinated natural products are made not by haloperoxidases, but by FADH2-dependent halogenases. The mechanism of the flavin-containing enzymes is obscure and there are no structural data. Here, crystals of PrnA (tryptophan 7-halogenase), an enzyme that regioselectively chlorinates tryptophan, cocrystallized with tryptophan and FAD are reported. The crystals belong to the tetragonal space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 67.8, c = 276.9 A. A data set to 1.8 A with 93% completeness and an Rmerge of 7.1% has been collected from a single flash-cooled crystal. A method for incorporating selenomethionine in a Pseudomonas fluorescens expression system also is reported.

Merkel AB, Major LL, Errey JC, Burkart MD, Field RA, Walsh CT, Naismith JH. 2004. The position of a key tyrosine in dTDP-4-Keto-6-deoxy-D-glucose-5-epimerase (EvaD) alters the substrate profile for this RmlC-like enzyme. J Biol Chem, 279 (31), pp. 32684-32691. | Show Abstract | Read more

Vancomycin, the last line of defense antibiotic, depends upon the attachment of the carbohydrate vancosamine to an aglycone skeleton for antibacterial activity. Vancomycin is a naturally occurring secondary metabolite that can be produced by bacterial fermentation. To combat emerging resistance, it has been proposed to genetically engineer bacteria to produce analogues of vancomycin. This requires a detailed understanding of the biochemical steps in the synthesis of vancomycin. Here we report the 1.4 A structure and biochemical characterization of EvaD, an RmlC-like protein that is required for the C-5' epimerization during synthesis of dTDP-epivancosamine. EvaD, although clearly belonging to the RmlC class of enzymes, displays very low activity in the archetypal RmlC reaction (double epimerization of dTDP-6-deoxy-4-keto-D-glucose at C-3' and C-5'). The high resolution structure of EvaD compared with the structures of authentic RmlC enzymes indicates that a subtle change in the enzyme active site repositions a key catalytic Tyr residue. A mutant designed to re-establish the normal position of the Tyr increases the RmlC-like activity of EvaD.

Beis K, Collins RF, Ford RC, Kamis AB, Whitfield C, Naismith JH. 2004. Three-dimensional structure of Wza, the protein required for translocation of group 1 capsular polysaccharide across the outer membrane of Escherichia coli. J Biol Chem, 279 (27), pp. 28227-28232. | Show Abstract | Read more

Wza is a highly conserved multimeric outer membrane protein complex required for the surface expression of the serotype K30 group 1 capsular polysaccharide in Escherichia coli. Here we present the first three-dimensional structure of this type of polysaccharide exporter at a 15.5-A resolution obtained using single particle averaging on a dataset of cryo-negatively stained protein. Previous structural studies on purified Wza have revealed a homo-oligomeric ring structure that is most probably composed of eight subunits. Symmetry analysis of the three-dimensional structure combined with biochemical two- and three-dimensional crystallographic data strongly suggest that Wza is an octameric complex with a C4 quasi-rotational symmetry and is organized as a tetramer of dimeric subunits. Wza is best described as a stack of two 4-A high rings with differing diameters providing a mushroom-like aspect from the side. The larger ring has a distinctive square shape with a diameter of 115 A, whereas the smaller is almost circular with a diameter of 90 A. In the center of the complex and enclosed by the four symmetrical arms is a small elliptical cagelike cavity of approximately 40 A in diameter. The central cavity is effectively sealed at the top and bottom of the complex but has small inter-arm holes when viewed from the side. We discuss the structure of this complex and implications in the surface translocation of cell-surface polysaccharide.

Naismith JH. 2004. Crisis time CHEMISTRY WORLD, 1 (7), pp. 27-27.

Beis K, Nesper J, Whitfield C, Naismith JH. 2004. Crystallization and preliminary X-ray diffraction analysis of Wza outer-membrane lipoprotein from Escherichia coli serotype O9a:K30. Acta Crystallogr D Biol Crystallogr, 60 (Pt 3), pp. 558-560. | Show Abstract | Read more

A novel integral membrane lipoprotein, Wza, from Escherichia coli serotype O9a:K30 has been purified and crystallized. Wza is required for the surface expression of the serotype K30 group 1 capsular polysaccharide of E. coli; closely related homologues are found in other bacteria that produce extracellular polysaccharides. The Wza crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 94.6, b = 215.5, c = 218.5 A. A data set to 3.0 A with 99.8% completeness and an R(merge) of 10.5% has been collected from a single crystal.

Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O'Hagan D, Naismith JH. 2004. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature, 427 (6974), pp. 561-565. | Show Abstract | Read more

Fluorine is the thirteenth most abundant element in the earth's crust, but fluoride concentrations in surface water are low and fluorinated metabolites are extremely rare. The fluoride ion is a potent nucleophile in its desolvated state, but is tightly hydrated in water and effectively inert. Low availability and a lack of chemical reactivity have largely excluded fluoride from biochemistry: in particular, fluorine's high redox potential precludes the haloperoxidase-type mechanism used in the metabolic incorporation of chloride and bromide ions. But fluorinated chemicals are growing in industrial importance, with applications in pharmaceuticals, agrochemicals and materials products. Reactive fluorination reagents requiring specialist process technologies are needed in industry and, although biological catalysts for these processes are highly sought after, only one enzyme that can convert fluoride to organic fluorine has been described. Streptomyces cattleya can form carbon-fluorine bonds and must therefore have evolved an enzyme able to overcome the chemical challenges of using aqueous fluoride. Here we report the sequence and three-dimensional structure of the first native fluorination enzyme, 5'-fluoro-5'-deoxyadenosine synthase, from this organism. Both substrate and products have been observed bound to the enzyme, enabling us to propose a nucleophilic substitution mechanism for this biological fluorination reaction.

Nesper J, Hill CMD, Paiment A, Harauz G, Beis K, Naismith JH, Whitfield C. 2003. Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J Biol Chem, 278 (50), pp. 49763-49772. | Show Abstract | Read more

The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.

Dong C, Deng H, Dorward M, Schaffrath C, O'Hagan D, Naismith JH. 2003. Crystallization and X-ray diffraction of 5'-fluoro-5'-deoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. Acta Crystallogr D Biol Crystallogr, 59 (Pt 12), pp. 2292-2293. | Show Abstract | Read more

Organofluorine compounds are widely prepared throughout the chemicals industry, but their prepararion generally requires harsh fluorinating reagents and non-aqueous solvents. On the other hand, biology has hardly exploited organofluorine compounds. A very few organisms synthesize organofluorine metabolites, suggesting they have evolved a mechanism to overcome the kinetic desolvation barrier to utilizing F(-)(aq). Here, the purification and crystallization of an enzyme from Streptomyces cattleya which is responsible for the synthesis of the C-F bond during fluoroacetate and 4-fluorothreonine biosynthesis is reported. The protein crystallizes in space group C222(1), with unit-cell parameters a = 75.9, b = 130.3, c = 183.4 A, alpha = beta = gamma = 90 degrees. Data were recorded to 1.9 A at the ESRF. The structure of the protein should provide important insights into the biochemical process of C-F bond formation.

Dong C, Deng H, Dorward M, Schaffrath C, O&apos;Hagan D, Naismith JH. 2003. Crystallization and X-ray diffraction of 5′-fluoro-5′- deoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya Acta Crystallographica - Section D Biological Crystallography, 59 (12), pp. 2292-2293. | Show Abstract | Read more

Organofluorine compounds are widely prepared throughout the chemicals industry, but their prepararion generally requires harsh fluorinating reagents and non-aqueous solvents. On the other hand, biology has hardly exploited organofluorine compounds. A very few organisms synthesize organofluorine metabolites, suggesting they have evolved a mechanism to overcome the kinetic desolvation barrier to utilizing F -(aq). Here, the purification and crystallization of an enzyme from Streptomyces cattleya which is responsible for the synthesis of the C-F bond during fluoroacetate and 4-fluorothreonine biosynthesis is reported. The protein crystallizes in space group C222 1, with unit-cell parameters a = 75.9, b = 130.3, c = 183.4 Å, α = β = γ = 90°. Data were recorded to 1.9 Å at the ESRF. The structure of the protein should provide important insights into the biochemical process of C-F bond formation.

Babaoglu K, Page MA, Jones VC, McNeil MR, Dong C, Naismith JH, Lee RE. 2003. Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg Med Chem Lett, 13 (19), pp. 3227-3230. | Show Abstract | Read more

The emergence of multi-drug resistant tuberculosis, coupled with the increasing overlap of the AIDS and tuberculosis pandemics has brought tuberculosis to the forefront as a major worldwide health concern. In an attempt to find new inhibitors of the enzymes in the essential rhamnose biosynthetic pathway, a virtual library of 2,3,5 trisubstituted-4-thiazolidinones was created. These compounds were then docked into the active site cavity of 6'hydroxyl; dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC) from Mycobacterium tuberculosis. The resulting docked conformations were consensus scored and the top 5% were slated for synthesis. Thus far, 94 compounds have been successfully synthesized and initially tested. Of those, 30 (32%) have > or =50% inhibitory activity (at 20 microM) in the coupled rhamnose synthetic assay with seven of the 30 also having modest activity against whole-cell M. tuberculosis.

Beis K, Allard STM, Hegeman AD, Murshudov G, Philp D, Naismith JH. 2003. The structure of NADH in the enzyme dTDP-d-glucose dehydratase (RmlB). J Am Chem Soc, 125 (39), pp. 11872-11878. | Show Abstract | Read more

The structure of Streptococcus suis serotype type 2 dTDP-d-glucose 4,6-dehydratase (RmlB) has been determined to 1.5 A resolution with its nicotinamide coenzyme and substrate analogue dTDP-xylose bound in an abortive complex. During enzyme turnover, NAD(+) abstracts a hydride from the C4' atom of dTDP-glucose-forming NADH. After elimination of water, hydride is then transferred back to the C6' atom of dTDP-4-keto-5,6-glucosene-regenerating NAD(+). Single-crystal spectroscopic studies unambiguously show that the coenzyme has been trapped as NADH in the crystal. Electron density clearly demonstrates that in contrast to native structures of RmlB where a flat nicotinamide ring is observed, the dihydropyridine ring of the reduced cofactor in this complex is found as a boat. The si face, from which the pro-S hydride is transferred, has a concave surface. Ab initio electronic structure calculations demonstrate that the presence of an internal hydrogen bond, between the amide NH on the nicotinamide ring and one of the oxygen atoms on a phosphate group, stabilizes this distorted conformation. Additionally, calculations show that the hydride donor ability of NADH is influenced by the degree of bending in the ring and may be influenced by an active-site tyrosine residue (Tyr 161). These results demonstrate the ability of dehydratase enzymes to fine-tune the redox potential of NADH through conformational changes in the nicotinamide ring.

Rahn A, Beis K, Naismith JH, Whitfield C. 2003. A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol, 185 (19), pp. 5882-5890. | Show Abstract | Read more

Escherichia coli group 1 K antigens form a tightly associated capsule structure on the cell surface. Although the general features of the early steps in capsular polysaccharide biosynthesis have been described, little is known about the later stages that culminate in assembly of a capsular structure on the cell surface. Group 1 capsule biosynthesis gene clusters (cps) in E. coli and Klebsiella pneumoniae include a conserved open reading frame, wzi. The wzi gene is the first of a block of four conserved genes (wzi-wza-wzb-wzc) found in all group 1 K-antigen serotypes. Unlike wza, wzb, and wzc homologs that are found in gene clusters responsible for production of exopolysaccharides (i.e., predominantly cell-free polymer) in a range of bacteria, wzi is found only in systems that assemble capsular polysaccharides. The predicted Wzi protein shows no similarity to any other known proteins in the databases, but computer analysis of Wzi predicted a cleavable signal sequence. Wzi was expressed with a C-terminal hexahistidine tag, purified, and used for the production of specific antibodies that facilitated localization of Wzi to the outer membrane. Circular dichroism spectroscopy indicates that Wzi consists primarily of a beta-barrel structure, and dynamic light scattering studies established that the protein behaves as a monomer in solution. A nonpolar wzi chromosomal mutant retained a mucoid phenotype and remained sensitive to lysis by a K30-specific bacteriophage. However, the mutant showed a significant reduction in cell-bound polymer, with a corresponding increase in cell-free material. Furthermore, examination of the mutant by electron microscopy showed that it lacked a coherent capsule structure. It is proposed that the Wzi protein plays a late role in capsule assembly, perhaps in the process that links high-molecular-weight capsule to the cell surface.

Ramsay RR, Naismith JH. 2003. A snapshot of carnitine acetyltransferase. Trends Biochem Sci, 28 (7), pp. 343-346. | Show Abstract | Read more

Carnitine acetyltransferase (CrAT) is part of the carnitine system that protects the acylation state of the pools of acetyl-coenzyme A, a key metabolic intermediate, by transferring excess acetate and other short-chain acyl groups to and from carnitine. The homology of CrAT with other carnitine acyltransferases, such as carnitine palmitoyltransferase I (CPT-I) that regulates fatty acid metabolism, make the solving of its structure a landmark in understanding mechanism and ligand binding in this family.

Field RA, Naismith JH. 2003. Structural and mechanistic basis of bacterial sugar nucleotide-modifying enzymes. Biochemistry, 42 (25), pp. 7637-7647. | Show Abstract | Read more

Recently, carbohydrates have come to the fore because of their central role in many biological processes. One area of current interest concerns the enzymatic modification of sugar nucleotides, in relation to both secondary metabolite glycosylation and the formation of complex cell surface-associated glycoconjugates. Bacteria, in particular, have proven to be a rich field in which to study these transformations, because they are often unique to specific classes of organisms. This has led to the realization that such microbial biosynthetic pathways might be exploited in the generation of novel antibiotics, or indeed serve as targets for such compounds. This work illustrates the interplay between protein structure determination, chemistry, and molecular biology in providing insight into the mechanism of such biochemical transformations.

Kerr ID, Wadsworth RIM, Cubeddu L, Blankenfeldt W, Naismith JH, White MF. 2003. Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J, 22 (11), pp. 2561-2570. | Show Abstract | Read more

Information processing pathways such as DNA replication are conserved in eukaryotes and archaea and are significantly different from those found in bacteria. Single-stranded DNA-binding (SSB) proteins (or replication protein A, RPA, in eukaryotes) play a central role in many of these pathways. However, whilst euryarchaea have a eukaryotic-type RPA homologue, crenarchaeal SSB proteins appear much more similar to the bacterial proteins, with a single OB fold for DNA binding and a flexible C-terminal tail that is implicated in protein-protein interactions. We have determined the crystal structure of the SSB protein from the crenarchaeote Sulfolobus solfataricus to 1.26 A. The structure shows a striking and unexpected similarity to the DNA-binding domains of human RPA, providing confirmation of the close relationship between archaea and eukaryotes. The high resolution of the structure, together with thermodynamic and mutational studies of DNA binding, allow us to propose a molecular basis for DNA binding and define the features required for eukaryotic and archaeal OB folds.

Dong C, Major LL, Allen A, Blankenfeldt W, Maskell D, Naismith JH. 2003. High-resolution structures of RmlC from Streptococcus suis in complex with substrate analogs locate the active site of this class of enzyme. Structure, 11 (6), pp. 715-723. | Show Abstract | Read more

Nature achieves the epimerization of carbohydrates by a variety of chemical routes. One common route is that performed by the class of enzyme defined by dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC) from the rhamnose pathway. Earlier studies failed to identify the key residues in catalysis. We report the 1.3 A structure of RmlC from Streptococcus suis type 2 and its complexes with dTDP-D-glucose and dTDP-D-xylose. The streptococcal RmlC enzymes belong to a separate subgroup, sharing only 25% identity with RmlC from other bacteria, yet the S. suis enzyme has similar kinetic properties and structure to other RmlC enzymes. Structure, sequence alignment, and mutational analysis have now allowed reliable identification of the catalytic residues and their roles.

Dong C, Beis K, Giraud M-F, Blankenfeldt W, Allard S, Major LL, Kerr ID, Whitfield C, Naismith JH. 2003. A structural perspective on the enzymes that convert dTDP-d-glucose into dTDP-l-rhamnose. Biochem Soc Trans, 31 (Pt 3), pp. 532-536. | Show Abstract | Read more

Bacteria have a rich collection of biochemical pathways for the synthesis of complex metabolites. These conversions often involve chemical reactions that are hard to reproduce in the laboratory. An area of considerable interest is in the manipulation and synthesis of carbohydrates. In contrast with amino acids, carbohydrates are densely functionalized (each carbon atom is attached to at least one heteroatom) and this holds out the prospect of discovering novel enzyme mechanisms. The results from the study of the biosynthetic dTDP-L-rhamnose pathway are discussed. dTDP-L-rhamnose is a key intermediate in many pathogenic bacteria, as it is the donor for L-rhamnose, which is found in the cell wall of important human pathogens, such as Mycobacteria tuberculosis and Salmonella typhimurium. All four enzymes have been structurally characterized; in particular, the acquisition of structural data on substrate complexes was extremely useful. The structural data have guided site-directed-mutagenesis studies that have been used to test mechanistic hypotheses. The results shed light on three classes of enzyme mechanism: nucleotide condensation, short-chain dehydrogenase activity and epimerization.

Fullerton SWB, Daff S, Sanders DAR, Ingledew WJ, Whitfield C, Chapman SK, Naismith JH. 2003. Potentiometric analysis of UDP-galactopyranose mutase: stabilization of the flavosemiquinone by substrate. Biochemistry, 42 (7), pp. 2104-2109. | Show Abstract | Read more

UDP-galactopyranose mutase is a flavoprotein which catalyses the interconversion of UDP-galactopyranose and UDP-galactofuranose. The enzyme is of interest because it provides the activated biosynthetic precursor of galactofuranose, a key cell wall component of many bacterial pathogens. The reaction mechanism of this mutase is intriguing because the anomeric oxygen forms a glycosidic bond, which means that the reaction must proceed by a novel mechanism involving ring breakage and closure. The structure of the enzyme is known, but the mechanism, although speculated on, is not resolved. The overall reaction is electrically neutral but a crypto-redox reaction is suggested by the requirement that the flavin must adopt the reduced form for activity. Herein we report a thermodynamic analysis of the enzyme's flavin cofactor with the objective of defining the system and setting parameters for possible reaction schemes. The analysis shows that the neutral semiquinone (FADH(*)) is stabilized in the presence of substrate and the fully reduced flavin is the anionic FADH(-) rather than the neutral FADH(2). The anionic FADH(-) has the potential to act as a rapid 1-electron donor/acceptor without being slowed by a coupled proton transfer and is therefore an ideal crypto-redox cofactor.

Liu H, Naismith JH, Hay RT. 2003. Adenovirus DNA replication. Curr Top Microbiol Immunol, 272 pp. 131-164. | Show Abstract | Read more

Replication of the adenovirus genome is catalysed by adenovirus DNA polymerase in which the adenovirus preterminal protein acts as a protein primer. DNA polymerase and preterminal protein form a heterodimer which, in the presence of the cellular transcription factors NFI/CTFI and NFIII/Oct-1, binds to the origin of DNA replication. DNA replication is initiated by DNA polymerase mediated transfer of dCMP onto preterminal protein. Further DNA synthesis is catalysed by DNA polymerase in a strand displacement mechanism which also requires adenovirus DNA binding protein. Here, we discuss the role of individual proteins in this process as revealed by biochemical analysis, mutagenesis and molecular modelling.

Merkel AB, Temple GK, Burkart MD, Losey HC, Beis K, Walsh CT, Naismith JH. 2002. Purification, crystallization and preliminary structural studies of dTDP-4-keto-6-deoxy-glucose-5-epimerase (EvaD) from Amycolatopsis orientalis, the fourth enzyme in the dTDP-L-epivancosamine biosynthetic pathway. Acta Crystallogr D Biol Crystallogr, 58 (Pt 7), pp. 1226-1228. | Show Abstract | Read more

The vancomycin class of antibiotics is regarded as the last line of defence against Gram-positive bacteria. The compounds used clinically are very complex organic molecules and are made by fermentation. The biosynthesis of these is complex and fascinating. Its study holds out the prospect of utilizing genetic engineering of the enzymes in the pathway in order to produce novel vancomycin analogues. In part, this requires detailed structural insight into substrate specificity as well as the enzyme mechanism. The crystallization of one of the enzymes in the chloroeremomycin biosynthetic pathway (a member of the vancomycin family), dTDP-3-amino-4-keto 2,3,6-trideoxy-3-C-methyl-glucose-5-epimerase (EvaD) from Amycolatopsis orientalis, is reported here. The protein is fourth in the pathway which makes a carbohydrate essential for the activity of chloroeremomycin. The crystals of EvaD diffract to 1.5 A and have unit-cell parameters a = 98.6, b = 72.0, c = 57.1 A with space group P2(1)2(1)2. Data to this resolution were collected at the European Synchrotron Radiation Facility.

Blankenfeldt W, Kerr ID, Giraud M-F, McMiken HJ, Leonard G, Whitfield C, Messner P, Graninger M, Naismith JH. 2002. Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. Structure, 10 (6), pp. 773-786. | Show Abstract | Read more

dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) catalyzes the final step in the conversion of dTDP-D-glucose to dTDP-L-rhamnose in an NAD(P)H- and Mg2+-dependent reaction. L-rhamnose biosynthesis is an antibacterial target. The structure of RmlD from Salmonella enterica serovar Typhimurium has been determined, and complexes with NADH, NADPH, and dTDP-L-rhamnose are reported. RmlD differs from other short chain dehydrogenases in that it has a novel dimer interface that contains Mg2+. Enzyme catalysis involves hydride transfer from the nicotinamide ring of the cofactor to the C4'-carbonyl group of the substrate. The substrate is activated through protonation by a conserved tyrosine. NAD(P)H is bound in a solvent-exposed cleft, allowing facile replacement. We suggest a novel role for the conserved serine/threonine residue of the catalytic triad of SDR enzymes.

Naismith J. 2002. Comment Chemistry in Britain, 38 (5), pp. 3.

Asuncion M, Blankenfeldt W, Barlow JN, Gani D, Naismith JH. 2002. The structure of 3-methylaspartase from Clostridium tetanomorphum functions via the common enolase chemical step. J Biol Chem, 277 (10), pp. 8306-8311. | Show Abstract | Read more

Methylaspartate ammonia-lyase (3-methylaspartase, MAL; EC ) catalyzes the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid. This reaction lies on the main catabolic pathway for glutamate in Clostridium tetanomorphum. MAL requires monovalent and divalent cation cofactors for full catalytic activity. The enzyme has attracted interest because of its potential use as a biocatalyst. The structure of C. tetanomorphum MAL has been solved to 1.9-A resolution by the single-wavelength anomalous diffraction method. A divalent metal ion complex of the protein has also been determined. MAL is a homodimer with each monomer consisting of two domains. One is an alpha/beta-barrel, and the other smaller domain is mainly beta-strands. The smaller domain partially occludes the C terminus of the barrel and forms a large cleft. The structure identifies MAL as belonging to the enolase superfamily of enzymes. The metal ion site is located in a large cleft between the domains. Potential active site residues have been identified based on a combination of their proximity to a metal ion site, molecular modeling, and sequence homology. In common with all members of the enolase superfamily, the carboxylic acid of the substrate is co-ordinated by the metal ions, and a proton adjacent to a carboxylic acid group of the substrate is abstracted by a base. In MAL, it appears that Lys(331) removes the alpha-proton of methylaspartic acid. This motif is the defining mechanistic characteristic of the enolase superfamily of which all have a common fold. The degree of structural conservation is remarkable given only four residues are absolutely conserved.

Allard STM, Beis K, Giraud MF, Hegeman AD, Gross JW, Wilmouth RC, Whitfield C, Graninger M, Messner P, Allen AG et al. 2002. Toward a structural understanding of the dehydratase mechanism. Structure, 10 (1), pp. 81-92. | Show Abstract | Read more

dTDP-D-glucose 4,6-dehydratase (RmlB) was first identified in the L-rhamnose biosynthetic pathway, where it catalyzes the conversion of dTDP-D-glucose into dTDP-4-keto-6-deoxy-D-glucose. The structures of RmlB from Salmonella enterica serovar Typhimurium in complex with substrate deoxythymidine 5'-diphospho-D-glucose (dTDP-D-glucose) and deoxythymidine 5'-diphosphate (dTDP), and RmlB from Streptococcus suis serotype 2 in complex with dTDP-D-glucose, dTDP, and deoxythymidine 5'-diphospho-D-pyrano-xylose (dTDP-xylose) have all been solved at resolutions between 1.8 A and 2.4 A. The structures show that the active sites are highly conserved. Importantly, the structures show that the active site tyrosine functions directly as the active site base, and an aspartic and glutamic acid pairing accomplishes the dehydration step of the enzyme mechanism. We conclude that the substrate is required to move within the active site to complete the catalytic cycle and that this movement is driven by the elimination of water. The results provide insight into members of the SDR superfamily.

Merkel AB, Temple GK, Burkart MD, Losey HC, Beis K, Walsh CT, Naismith JH. 2002. Purification, crystallization and preliminary structural studies of dTDP-4-keto-6-deoxy-glucose-5-epimerase (EvaD) from Amycolatopsis orientalis, the fourth enzyme in the dTDP-L-epivancosamine biosynthetic pathway Acta Crystallographica Section D: Biological Crystallography, 58 (7), pp. 1226-1228. | Show Abstract | Read more

The vancomycin class of antibiotics is regarded as the last line of defence against Gram-positive bacteria. The compounds used clinically are very complex organic molecules and are made by fermentation. The biosynthesis of these is complex and fascinating. Its study holds out the prospect of utilizing genetic engineering of the enzymes in the pathway in order to produce novel vancomycin analogues. In part, this requires detailed structural insight into substrate specificity as well as the enzyme mechanism. The crystallization of one of the enzymes in the chloroeremomycin biosynthetic pathway (a member of the vancomycin family), dTDP-3-amino-4-keto 2,3,6-trideoxy-3-C-methyl-glucose-5-epimerase (EvaD) from Amycolatopsis orientalis, is reported here. The protein is fourth in the pathway which makes a carbohydrate essential for the activity of chloroeremomycin. The crystals of EvaD diffract to 1.5 Å and have unit-cell parameters a = 98.6, b = 72.0, c = 57.1 Å with space group P21212. Data to this resolution were collected at the European Synchrotron Radiation Facility.

Kannathasan VS, Dong CJ, Wing C, Preston A, Maskell DJ, Naismith JH, Field RA. 2002. Biochemical and Structural Analysis of the Role of the Wlb Gene Locus in Bordetella Pertussis Lipopolysaccharide Biosynthesis. ScientificWorldJournal, 2 pp. 55-56. | Read more

Sanders DAR, McMahon SA, Leonard GL, Naismith JH. 2001. Molecular placement of experimental electron density: A case study on UDP-galactopyranose mutase Acta Crystallographica - Section D Biological Crystallography, 57 (10), pp. 1415-1420. | Show Abstract | Read more

The structure of UDP-galactopyranose mutase, the enzyme responsible for the conversion of UDP-galactopyranose to UDP-galactofuranose, has been solved. The structure solution required the use of two crystal forms and a selenomethionine variant. Crystal form P21 was used to collect a complete MAD data set, a native data set and a single-wavelength non-isomorphous selenomethionine data set. A starting set of MAD phases was then improved by non-crystallographic averaging and cross-crystal averaging of all P21 data. The initial maps were of such low quality that transformation matrices between cells could not be determined. It was therefore assumed that although there were large changes in unit-cell parameters, the molecule occupied the same position in each cell. This starting assumption was allowed to refine during the averaging procedure and did so satisfactorily. Despite a visible increase in the quality of the map allowing some secondary-structural elements to be located, the overall structure could not be traced and refined. The rediscovery of the second crystal form, P212121, allowed the collection of a native data set to 2.4 Å. Molecular placement of electron density was used to determine the relationship between the two unit cells. In this study, only the already averaged P21 experimental density could be placed in the P212121 map. Less extensively density-modified maps did not give a clear solution. The study suggests even poor non-isomorphous data can be used to significantly improve map quality. The relationship between P21 and P212121 could then be used in a final round of cross-crystal averaging to generate phases. The resulting map was easily traced and the structure has been refined. The structure sheds important light on a novel mechanism and is also a therapeutic target in the treatment of tuberculosis.

Naismith J, Cowtan K, Ashton A. 2001. Molecular replacement and its relatives Acta Crystallographica - Section D Biological Crystallography, 57 (10),

Kerr ID, Wadsworth RIM, Blankenfeldt W, Staines AG, White MF, Naismith JH. 2001. Overexpression, purification, crystallization and data collection of a single-stranded DNA-binding protein from Sulfolobus solfataricus Acta Crystallographica Section D: Biological Crystallography, 57 (9), pp. 1290-1292. | Show Abstract | Read more

Single-stranded DNA-binding proteins are recruited when single-stranded DNA is exposed by disruption of the duplex. Many important biological processes such as DNA replication can only occur when the two strands of the duplex are separated. A defining trait of these proteins is the presence of the so-called OB fold. The single-stranded DNA-binding protein of the crenarchaeote Sulfolobus solfataricus has a number of interesting differences and similarities to both the eubacterial and eukaryotic homologues. It has an extended C-terminal tail with significant sequence identity to a similar region in the eubacterial protein. However, the sequence of the OB fold is much more like the eukaryotic and euryarchaeal proteins. The S. solfataricus protein remains a monomer in the absence of DNA but rapidly polymerizes upon binding - a behaviour not seen in the Escherichia coli protein. The protein has been overexpressed, purified and crystallized. The protein crystallizes in two related forms, both having space group P61 (or P65) with approximate unit-cell parameters a = b = 75, c = 69 Å, but the crystals are distinguished by their size and morphology. The larger crystals are hexagonal bipyramids and are merohedrally twinned, diffracting to 1.34 Å with diffraction observed to 1.2 Å. Smaller needle-like crystals diffract to about 2.0 Å but are not twinned. Molecular-replacement attempts have failed owing to low identity with available search models. The structure will be determined by multiple-wavelength methods.

Kannathasan VS, Staines AG, Dong CJ, Field RA, Preston AG, Maskell DJ, Naismith JH. 2001. Overexpression, purification, crystallization and data collection on the Bordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2′-epimerase Acta Crystallographica Section D: Biological Crystallography, 57 (9), pp. 1310-1312. | Show Abstract | Read more

The Boredetella pertussis wlbD gene product is a putative uridine-5-diphosphate N-acetylglucosamine (UDP-GlcNAc) 2′-epimerase involved in Band A lipopolysaccharide biosynthesis. The wlbD gene is homologous to Escherichia coli rffE (32% identical), an established UDP-GlcNAc 2′-epimerase that is involved in enterobacterial common antigen (ECA) formation. The structure of the rffE protein reveals an unexpected role for a bound sodium ion in orientating a substrate-binding α-helix in the enzyme active site. Whilst key active-site residues in rffE are present in the wlbD sequence, the sodium-binding residues outside the active site are absent. This raises questions about the modulation of enzyme activity in these two enzymes. The wlbD gene from B. pertussis has been cloned and overexpressed in E. coli and the resulting protein has been purified to homogeneity. In the current study, crystals of the mutant Gln339Arg wlbD enzyme have been obtained by sitting-drop vapour diffusion. Uncomplexed Gln339Arg and UDP-GlcNAc complex data sets have been collected in-house on a rotating-anode generator to 2.1 Å. Combined, the data sets identify the space group as P212121, with unit-cell parameters a = 78, b = 91, c = 125 Å, α = β = γ = 90°. The asymmetric unit contains two monomers and 53% solvent.

Allard ST, Giraud MF, Naismith JH. 2001. Epimerases: structure, function and mechanism. Cell Mol Life Sci, 58 (11), pp. 1650-1665. | Show Abstract | Read more

Carbohydrates are ideally suited for molecular recognition. By varying the stereochemistry of the hydroxyl substituents, the simple six-carbon, six-oxygen pyranose ring can exist as 10 different molecules. With the further addition of simple chemical changes, the potential for generating distinct molecular recognition surfaces far exceeds that of amino acids. This ability to control and change the stereochemistry of the hydroxyl substituents is very important in biology. Epimerases can be found in animals, plants and microorganisms where they participate in important metabolic pathways such as the Leloir pathway, which involves the conversion of galactose to glucose-1-phosphate. Bacterial epimerases are involved in the production of complex carbohydrate polymers that are used in their cell walls and envelopes and are recognised as potential therapeutic targets for the treatment of bacterial infection. Several distinct strategies have evolved to invert or epimerise the hydroxyl substituents on carbohydrates. In this review we group epimerisation by mechanism and discuss in detail the molecular basis for each group. These groups include enzymes which epimerise by a transient keto intermediate, those that rely on a permanent keto group, those that eliminate then add a nucleotide, those that break then reform carbon-carbon bonds and those that linearize and cyclize the pyranose ring. This approach highlights the quite different biochemical processes that underlie what is seemingly a simple reaction. What this review shows is that each position on the carbohydrate can be epimerised and that epimerisation is found in all organisms.

Sanders DA, Staines AG, McMahon SA, McNeil MR, Whitfield C, Naismith JH. 2001. UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol, 8 (10), pp. 858-863. | Show Abstract | Read more

Uridine diphosphogalactofuranose (UDP-Galf ) is the precursor of the d-galactofuranose (Galf ) residues found in bacterial and parasitic cell walls, including those of many pathogens, such as Mycobacterium tuberculosis and Trypanosoma cruzi. UDP-Galf is made from UDP-galactopyranose (UDP-Galp) by the enzyme UDP-galactopyranose mutase (mutase). The mutase enzyme is essential for the viability of mycobacteria and is not found in humans, making it a viable therapeutic target. The mechanism by which mutase achieves the unprecedented ring contraction of a nonreducing sugar is unclear. We have solved the crystal structure of Escherichia coli mutase to 2.4 A resolution. The novel structure shows that the flavin nucleotide is located in a cleft lined with conserved residues. Site-directed mutagenesis studies indicate that this cleft contains the active site, with the sugar ring of the substrate UDP-galactose adjacent to the exposed isoalloxazine ring of FAD. Assay results establish that the enzyme is active only when flavin is reduced. We conclude that mutase most likely functions by transient reduction of substrate.

Sanders DA, McMahon SA, Leonard GL, Naismith JH. 2001. Molecular placement of experimental electron density: a case study on UDP-galactopyranose mutase. Acta Crystallogr D Biol Crystallogr, 57 (Pt 10), pp. 1415-1420. | Show Abstract | Read more

The structure of UDP-galactopyranose mutase, the enzyme responsible for the conversion of UDP-galactopyranose to UDP-galactofuranose, has been solved. The structure solution required the use of two crystal forms and a selenomethionine variant. Crystal form P2(1) was used to collect a complete MAD data set, a native data set and a single-wavelength non-isomorphous selenomethionine data set. A starting set of MAD phases was then improved by non-crystallographic averaging and cross-crystal averaging of all P2(1) data. The initial maps were of such low quality that transformation matrices between cells could not be determined. It was therefore assumed that although there were large changes in unit-cell parameters, the molecule occupied the same position in each cell. This starting assumption was allowed to refine during the averaging procedure and did so satisfactorily. Despite a visible increase in the quality of the map allowing some secondary-structural elements to be located, the overall structure could not be traced and refined. The rediscovery of the second crystal form, P2(1)2(1)2(1), allowed the collection of a native data set to 2.4 A. Molecular placement of electron density was used to determine the relationship between the two unit cells. In this study, only the already averaged P2(1) experimental density could be placed in the P2(1)2(1)2(1) map. Less extensively density-modified maps did not give a clear solution. The study suggests even poor non-isomorphous data can be used to significantly improve map quality. The relationship between P2(1) and P2(1)2(1)2(1) could then be used in a final round of cross-crystal averaging to generate phases. The resulting map was easily traced and the structure has been refined. The structure sheds important light on a novel mechanism and is also a therapeutic target in the treatment of tuberculosis.

Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT. 2001. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem, 276 (38), pp. 35368-35374. | Show Abstract | Read more

Conjugation of the small ubiquitin-like modifier SUMO-1/SMT3C/Sentrin-1 to proteins in vitro is dependent on a heterodimeric E1 (SAE1/SAE2) and an E2 (Ubc9). Although SUMO-2/SMT3A/Sentrin-3 and SUMO-3/SMT3B/Sentrin-2 share 50% sequence identity with SUMO-1, they are functionally distinct. Inspection of the SUMO-2 and SUMO-3 sequences indicates that they both contain the sequence psiKXE, which represents the consensus SUMO modification site. As a consequence SAE1/SAE2 and Ubc9 catalyze the formation of polymeric chains of SUMO-2 and SUMO-3 on protein substrates in vitro, and SUMO-2 chains are detected in vivo. The ability to form polymeric chains is not shared by SUMO-1, and although all SUMO species use the same conjugation machinery, modification by SUMO-1 and SUMO-2/-3 may have distinct functional consequences.

Sri Kannathasan V, Staines AG, Dong CJ, Field RA, Preston AG, Maskell DJ, Naismith JH. 2001. Overexpression, purification, crystallization and data collection on the Bordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2'-epimerase. Acta Crystallogr D Biol Crystallogr, 57 (Pt 9), pp. 1310-1312. | Show Abstract | Read more

The Boredetella pertussis wlbD gene product is a putative uridine-5-diphosphate N-acetylglucosamine (UDP-GlcNAc) 2'-epimerase involved in Band A lipopolysaccharide biosynthesis. The wlbD gene is homologous to Escherichia coli rffE (32% identical), an established UDP-GlcNAc 2'-epimerase that is involved in enterobacterial common antigen (ECA) formation. The structure of the rffE protein reveals an unexpected role for a bound sodium ion in orientating a substrate-binding alpha-helix in the enzyme active site. Whilst key active-site residues in rffE are present in the wlbD sequence, the sodium-binding residues outside the active site are absent. This raises questions about the modulation of enzyme activity in these two enzymes. The wlbD gene from B. pertussis has been cloned and overexpressed in E. coli and the resulting protein has been purified to homogeneity. In the current study, crystals of the mutant Gln339Arg wlbD enzyme have been obtained by sitting-drop vapour diffusion. Uncomplexed Gln339Arg and UDP-GlcNAc complex data sets have been collected in-house on a rotating-anode generator to 2.1 A. Combined, the data sets identify the space group as P2(1)2(1)2(1), with unit-cell parameters a = 78, b = 91, c = 125 A, alpha = beta = gamma = 90 degrees. The asymmetric unit contains two monomers and 53% solvent.

Kerr ID, Wadsworth RI, Blankenfeldt W, Staines AG, White MF, Naismith JH. 2001. Overexpression, purification, crystallization and data collection of a single-stranded DNA-binding protein from Sulfolobus solfataricus. Acta Crystallogr D Biol Crystallogr, 57 (Pt 9), pp. 1290-1292. | Show Abstract | Read more

Single-stranded DNA-binding proteins are recruited when single-stranded DNA is exposed by disruption of the duplex. Many important biological processes such as DNA replication can only occur when the two strands of the duplex are separated. A defining trait of these proteins is the presence of the so-called OB fold. The single-stranded DNA-binding protein of the crenarchaeote Sulfolobus solfataricus has a number of interesting differences and similarities to both the eubacterial and eukaryotic homologues. It has an extended C-terminal tail with significant sequence identity to a similar region in the eubacterial protein. However, the sequence of the OB fold is much more like the eukaryotic and euryarchaeal proteins. The S. solfataricus protein remains a monomer in the absence of DNA but rapidly polymerizes upon binding - a behaviour not seen in the Escherichia coli protein. The protein has been overexpressed, purified and crystallized. The protein crystallizes in two related forms, both having space group P6(1) (or P6(5)) with approximate unit-cell parameters a = b = 75, c = 69 A, but the crystals are distinguished by their size and morphology. The larger crystals are hexagonal bipyramids and are merohedrally twinned, diffracting to 1.34 A with diffraction observed to 1.2 A. Smaller needle-like crystals diffract to about 2.0 A but are not twinned. Molecular-replacement attempts have failed owing to low identity with available search models. The structure will be determined by multiple-wavelength methods.

Bryce RA, Hillier IH, Naismith JH. 2001. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Biophys J, 81 (3), pp. 1373-1388. | Show Abstract | Read more

Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.

Sanders DA, Moothoo DN, Raftery J, Howard AJ, Helliwell JR, Naismith JH. 2001. The 1.2 A resolution structure of the Con A-dimannose complex. J Mol Biol, 310 (4), pp. 875-884. | Show Abstract | Read more

The complex between concanavalin A (Con A) and alpha1-2 mannobiose (mannose alpha1-2 mannose) has been refined to 1.2 A resolution. This is the highest resolution structure reported for any sugar-lectin complex. As the native structure of Con A to 0.94 A resolution is already in the database, this gives us a unique opportunity to examine sugar-protein binding at high resolution. These data have allowed us to model a number of hydrogen atoms involved in the binding of the sugar to Con A, using the difference density map to place the hydrogen atoms. This map reveals the presence of the protonated form of Asp208 involved in binding. Asp208 is not protonated in the 0.94 A native structure. Our results clearly show that this residue is protonated and hydrogen bonds to the sugar. The structure accounts for the higher affinity of the alpha1-2 linked sugar when compared to other disaccharides. This structure identifies different interactions to those predicted by previous modelling studies. We believe that the additional data presented here will enable significant improvements to be made to the sugar-protein modelling algorithms.

Asuncion M, Barlow JN, Pollard J, Staines AG, McMahon SA, Blankenfeldt W, Gani D, Naismith JH. 2001. Overexpression, purification, crystallization and data collection of 3-methylaspartase from Clostridium tetanomorphum Acta Crystallographica Section D: Biological Crystallography, 57 (5), pp. 731-733. | Show Abstract | Read more

3-Methylaspartase (E.C. 4.3.1.2) catalyses the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid as well as a slower syn elimination from the (2S,3R)-epimer, L-erythro-3-methylaspartic acid. The anti-elimination reaction occurs in the second step of the catabolic pathway for glutamic acid in Clostridium tetanomorphum. The reverse reaction is of particular interest because the addition of ammonia to substituted fumaric acids is highly stereoselective and gives highly functionalized amino acids. The mechanism of the transformation is unusual and of considerable interest. 3-Methylaspartase from C. tetanomorphum has been overexpressed and purified from Escherichia coli. Crystals of the enzyme have been obtained by sitting-drop vapour diffusion. Two native data sets have been collected, one in-house on a rotating-anode generator to 3.2 Å and one at the European Synchrotron Radiation Facility to 2.0 Å. A 2.1 Å data set has been collected on a crystal of selenomethionine protein. Combining the data sets identify the space group as P21212, with unit-cell parameters a = 110.3, b = 109.9, c = 67.2 Å, α = β = γ = 90°. The asymmetric unit contains two monomers with 42% solvent. A self-rotation function indicates the presence of a twofold axis, consistent with a biological dimer.

Asuncion M, Barlow JN, Pollard J, Staines AG, McMahon SA, Blankenfeldt W, Gani D, Naismith JH. 2001. Overexpression, purification, crystallization and data collection of 3-methylaspartase from Clostridium tetanomorphum. Acta Crystallogr D Biol Crystallogr, 57 (Pt 5), pp. 731-733. | Show Abstract | Read more

3-Methylaspartase (E.C. 4.3.1.2) catalyses the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid as well as a slower syn elimination from the (2S,3R)-epimer, L-erythro-3-methylaspartic acid. The anti-elimination reaction occurs in the second step of the catabolic pathway for glutamic acid in Clostridium tetanomorphum. The reverse reaction is of particular interest because the addition of ammonia to substituted fumaric acids is highly stereoselective and gives highly functionalized amino acids. The mechanism of the transformation is unusual and of considerable interest. 3-Methylaspartase from C. tetanomorphum has been overexpressed and purified from Escherichia coli. Crystals of the enzyme have been obtained by sitting-drop vapour diffusion. Two native data sets have been collected, one in-house on a rotating-anode generator to 3.2 A and one at the European Synchrotron Radiation Facility to 2.0 A. A 2.1 A data set has been collected on a crystal of selenomethionine protein. Combining the data sets identify the space group as P2(1)2(1)2, with unit-cell parameters a = 110.3, b = 109.9, c = 67.2 A, alpha = beta = gamma = 90 degrees. The asymmetric unit contains two monomers with 42% solvent. A self-rotation function indicates the presence of a twofold axis, consistent with a biological dimer.

Allard ST, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH. 2001. The crystal structure of dTDP-D-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway. J Mol Biol, 307 (1), pp. 283-295. | Show Abstract | Read more

l-Rhamnose is a 6-deoxyhexose that is found in a variety of different glycoconjugates in the cell walls of pathogenic bacteria. The precursor of l-rhamnose is dTDP-l-rhamnose, which is synthesised from glucose- 1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway requiring four enzymes. Significantly this pathway does not exist in humans and all four enzymes therefore represent potential therapeutic targets. dTDP-D-glucose 4,6-dehydratase (RmlB; EC 4.2.1.46) is the second enzyme in the dTDP-L-rhamnose biosynthetic pathway. The structure of Salmonella enterica serovar Typhimurium RmlB had been determined to 2.47 A resolution with its cofactor NAD(+) bound. The structure has been refined to a crystallographic R-factor of 20.4 % and an R-free value of 24.9 % with good stereochemistry.RmlB functions as a homodimer with monomer association occurring principally through hydrophobic interactions via a four-helix bundle. Each monomer exhibits an alpha/beta structure that can be divided into two domains. The larger N-terminal domain binds the nucleotide cofactor NAD(+) and consists of a seven-stranded beta-sheet surrounded by alpha-helices. The smaller C-terminal domain is responsible for binding the sugar substrate dTDP-d-glucose and contains four beta-strands and six alpha-helices. The two domains meet to form a cavity in the enzyme. The highly conserved active site Tyr(167)XXXLys(171) catalytic couple and the GlyXGlyXXGly motif at the N terminus characterise RmlB as a member of the short-chain dehydrogenase/reductase extended family. The quaternary structure of RmlB and its similarity to a number of other closely related short-chain dehydrogenase/reductase enzymes have enabled us to propose a mechanism of catalysis for this important enzyme.

Cited:

87

WOS

Allard STM, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH. 2001. The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar typhimurium, the second enzyme in the dTDP-L-rhamnose pathway JOURNAL OF MOLECULAR BIOLOGY, 307 (1), pp. 283-295. | Read more

Harrison JA, Kartha KP, Turnbull WB, Scheuerl SL, Naismith JH, Schenkman S, Field RA. 2001. Hydrolase and sialyltransferase activities of trypanosoma cruzi trans-sialidase towards NeuAc-alpha-2,3-gal-Gal-beta-O-PNP. Bioorg Med Chem Lett, 11 (2), pp. 141-144. | Show Abstract | Read more

NeuAc-alpha-2,3-Gal-beta-O-PNP has been synthesised and its ability to act as a substrate for the hydrolase and transferase activities of Trypanosoma cruzi trans-sialidase have been investigated. The turn-over of this compound shows marked differences from the behaviour of NeuAc-MU. In addition, distinct differences in the action of T. cruzi trans-sialidase and Clostridium perfringens neuraminidase on NeuAc-alpha-2,3-Gal-beta-O-PNP were apparent.

Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, Fierke CA, Toone EJ, Naismith JH. 2001. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure, 9 (1), pp. 1-9. | Show Abstract | Read more

BACKGROUND: Aldolases are carbon bond-forming enzymes that have long been identified as useful tools for the organic chemist. However, their utility is limited in part by their narrow substrate utilization. Site-directed mutagenesis of various enzymes to alter their specificity has been performed for many years, typically without the desired effect. More recently directed evolution has been employed to engineer new activities onto existing scaffoldings. This approach allows random mutation of the gene and then selects for fitness to purpose those proteins with the desired activity. To date such approaches have furnished novel activities through multiple mutations of residues involved in recognition; in no instance has a key catalytic residue been altered while activity is retained. RESULTS: We report a double mutant of E. coli 2-keto-3-deoxy-6-phosphogluconate aldolase with reduced but measurable enzyme activity and a synthetically useful substrate profile. The mutant was identified from directed-evolution experiments. Modification of substrate specificity is achieved by altering the position of the active site lysine from one beta strand to a neighboring strand rather than by modification of the substrate recognition site. The new enzyme is different to all other existing aldolases with respect to the location of its active site to secondary structure. The new enzyme still displays enantiofacial discrimination during aldol addition. We have determined the crystal structure of the wild-type enzyme (by multiple wavelength methods) to 2.17 A and the double mutant enzyme to 2.7 A resolution. CONCLUSIONS: These results suggest that the scope of directed evolution is substantially larger than previously envisioned in that it is possible to perturb the active site residues themselves as well as surrounding loops to alter specificity. The structure of the double mutant shows how catalytic competency is maintained despite spatial reorganization of the active site with respect to substrate.

Blankenfeldt W, Asuncion M, Lam JS, Naismith JH. 2000. The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J, 19 (24), pp. 6652-6663. | Show Abstract | Read more

The synthesis of deoxy-thymidine di-phosphate (dTDP)-L-rhamnose, an important component of the cell wall of many microorganisms, is a target for therapeutic intervention. The first enzyme in the dTDP-L-rhamnose biosynthetic pathway is glucose-1-phosphate thymidylyltransferase (RmlA). RmlA is inhibited by dTDP-L-rhamnose thereby regulating L-rhamnose production in bacteria. The structure of Pseudomonas aeruginosa RmlA has been solved to 1.66 A resolution. RmlA is a homotetramer, with the monomer consisting of three functional subdomains. The sugar binding and dimerization subdomains are unique to RmlA-like enzymes. The sequence of the core subdomain is found not only in sugar nucleotidyltransferases but also in other nucleotidyltransferases. The structures of five distinct enzyme substrate- product complexes reveal the enzyme mechanism that involves precise positioning of the nucleophile and activation of the electrophile. All the key residues are within the core subdomain, suggesting that the basic mechanism is found in many nucleotidyltransferases. The dTDP-L-rhamnose complex identifies how the protein is controlled by its natural inhibitor. This work provides a platform for the design of novel drugs against pathogenic bacteria.

Giraud MF, Naismith JH. 2000. The rhamnose pathway. Curr Opin Struct Biol, 10 (6), pp. 687-696. | Show Abstract | Read more

L-Rhamnose is a deoxy sugar found widely in bacteria and plants. Evidence continues to emerge about its essential role in many pathogenic bacteria. The crystal structures of two of the four enzymes involved in its biosynthetic pathway have been reported and the other two have been submitted for publication. This pathway does not exist in humans, making enzymes of this pathway very attractive targets for therapeutic intervention.

Liu H, Naismith JH, Hay RT. 2000. Identification of conserved residues contributing to the activities of adenovirus DNA polymerase. J Virol, 74 (24), pp. 11681-11689. | Show Abstract | Read more

Adenovirus codes for a DNA polymerase that is a member of the DNA polymerase alpha family and uses a protein primer for initiation of DNA synthesis. It contains motifs characteristic of a proofreading 3'-5'-exonuclease domain located in the N-terminal region and several polymerase motifs located in the C-terminal region. To determine the role of adenovirus DNA polymerase in DNA replication, 22 site-directed mutations were introduced into the conserved DNA polymerase motifs in the C-terminal region of adenovirus DNA polymerase and the mutant forms were expressed in insect cells using a baculovirus expression system. Each mutant enzyme was tested for DNA binding activity, the ability to interact with pTP, DNA polymerase catalytic activity, and the ability to participate in the initiation of adenovirus DNA replication. The mutant phenotypes identify functional domains within the adenovirus DNA polymerase and allow discrimination between the roles of conserved residues in the various activities carried out by the protein. Using the functional data in this study and the previously published structure of the bacteriophage RB69 DNA polymerase (J. Wang et al., Cell 89:1087-1099, 1997), it is possible to envisage how the conserved domains in the adenovirus DNA polymerase function.

Blankenfeldt W, Giraud MF, Leonard G, Rahim R, Creuzenet C, Lam JS, Naismith JH. 2000. The purification, crystallization and preliminary structural characterization of glucose-1-phosphate thymidylyltransferase (RmlA), the first enzyme of the dTDP-L-rhamnose synthesis pathway from Pseudomonas aeruginosa Acta Crystallographica Section D: Biological Crystallography, 56 (11), pp. 1501-1504. | Show Abstract | Read more

Glucose-1-phosphate thymidylyltransferase (RmlA; E.C. 2.7.7.24) is the first of four enzymes involved in the biosynthesis of dTDP-L-rhamnose, the precursor of L-rhamnose, a key component of the cell wall of many pathogenic bacteria. RmlA catalyses the condensation of thymidine triphosphate (dTTP) and α-D-glucose-1-phosphate (G1P), yielding dTDP-D-glucose. RmlA from Pseudomonas aeruginosa has been overexpressed and purified. Crystals of the enzyme have been grown using the sitting-drop vapour-diffusion technique with PEG 6000 and lithium sulfate as precipitant. Several diffraction data sets of single frozen crystals were collected to a resolution of 1.66 Å. Crystals belonged to space group P1, with unit-cell parameters a = 71.5, b = 73.1, c = 134.7 Å, α = 89.9, β = 80.9, γ= 81.1°. The asymmetric unit contains eight monomers in the form of two RmlA tetramers with a solvent content of 51%. Seleno-methionine-labelled protein has been obtained and crystallized.

Blankenfeldt W, Giraud MF, Leonard G, Rahim R, Creuzenet C, Lam JS, Naismith JH. 2000. The purification, crystallization and preliminary structural characterization of glucose-1-phosphate thymidylyltransferase (RmlA), the first enzyme of the dTDP-L-rhamnose synthesis pathway from Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr, 56 (Pt 11), pp. 1501-1504. | Show Abstract | Read more

Glucose-1-phosphate thymidylyltransferase (RmlA; E.C. 2.7.7.24) is the first of four enzymes involved in the biosynthesis of dTDP-L-rhamnose, the precursor of L-rhamnose, a key component of the cell wall of many pathogenic bacteria. RmlA catalyses the condensation of thymidine triphosphate (dTTP) and alpha-D-glucose-1-phosphate (G1P), yielding dTDP-D-glucose. RmlA from Pseudomonas aeruginosa has been overexpressed and purified. Crystals of the enzyme have been grown using the sitting-drop vapour-diffusion technique with PEG 6000 and lithium sulfate as precipitant. Several diffraction data sets of single frozen crystals were collected to a resolution of 1.66 A. Crystals belonged to space group P1, with unit-cell parameters a = 71.5, b = 73.1, c = 134.7 A, alpha = 89.9, beta = 80.9, gamma = 81.1 degrees. The asymmetric unit contains eight monomers in the form of two RmlA tetramers with a solvent content of 51%. Selenomethionine-labelled protein has been obtained and crystallized.

Idriss HT, Naismith JH. 2000. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech, 50 (3), pp. 184-195. | Show Abstract | Read more

Tumour Necrosis Factor alpha (TNF alpha), is an inflammatory cytokine produced by macrophages/monocytes during acute inflammation and is responsible for a diverse range of signalling events within cells, leading to necrosis or apoptosis. The protein is also important for resistance to infection and cancers. TNF alpha exerts many of its effects by binding, as a trimer, to either a 55 kDa cell membrane receptor termed TNFR-1 or a 75 kDa cell membrane receptor termed TNFR-2. Both these receptors belong to the so-called TNF receptor superfamily. The superfamily includes FAS, CD40, CD27, and RANK. The defining trait of these receptors is an extra cellular domain comprised of two to six repeats of cysteine rich motifs. Additionally, a number of structurally related "decoy receptors" exist that act to sequester TNF molecules, thereby rescuing cells from apoptosis. The crystal structures of TNF alpha, TNF beta, the extracellular domain of TNFR-1 (denoted sTNFR-1), and the TNF beta sTNFR-1 complex have been defined by crystallography. This article will review the structure/function relationships of the TNF alpha and the TNF receptor superfamily. It will also discuss insights as to how structural features play a role in the pleiotropic effects of TNF alpha.

Cited:

362

Scopus

Idriss HT, Naismith JH. 2000. TNFα and the TNF receptor superfamily: Structure-function relationship(s) Microscopy Research and Technique, 50 (3), pp. 184-195. | Show Abstract | Read more

Tumour Necrosis Factor α (TNFα), is an inflammatory cytokine produced by macrophages/monocytes during acute inflammation and is responsible for a diverse range of signalling events within cells, leading to necrosis or apoptosis. The protein is also important for resistance to infection and cancers. TNFα exerts many of its effects by binding, as a trimer, to either a 55 kDa cell membrane receptor termed TNFR-1 or a 75 kDa cell membrane receptor termed TNFR-2. Both these receptors belong to the so-called TNF receptor superfamily. The superfamily includes FAS, CD40, CD27, and RANK. The defining trait of these receptors is an extra cellular domain comprised of two to six repeats of cysteine rich motifs. Additionally, a number of structurally related 'decoy receptors' exist that act to sequester TNF molecules, thereby rescuing cells from apoptosis. The crystal structures of TNFα, TNFβ, the extracellular domain of TNFR-1 (denoted sTNFR-1), and the TNFβ sTNFR-1 complex have been defined by crystallography. This article will review the structure/function relationships of the TNFα and the TNF receptor superfamily. It will also discuss insights as to how structural features play a role in the pleiotropic effects of TNFα. (C) 2000 Wiley-Liss, Inc.

Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH. 2000. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct Biol, 7 (5), pp. 398-402. | Show Abstract | Read more

Deoxythymidine diphosphate (dTDP)-L-rhamnose is the precursor of L-rhamnose, a saccharide required for the virulence of some pathogenic bacteria. dTDP-L-rhamnose is synthesized from glucose-1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway involving four distinct enzymes. This pathway does not exist in humans and the enzymes involved in dTDP-L-rhamnose synthesis are potential targets for the design of new therapeutic agents. Here, the crystal structure of dTDP-6-deoxy-D-xylo-4-hexulose 3,5 epimerase (RmlC, EC5.1.3.13) from Salmonella enterica serovar Typhimurium was determined. The third enzyme of the rhamnose biosynthetic pathway, RmlC epimerizes at two carbon centers, the 3 and 5 positions of the sugar ring. The structure was determined by multiwavelength anomalous diffraction to a resolution of 2.17 A. RmlC is a dimer and each monomer is formed mainly from two beta-sheets arranged in a beta-sandwich. The structure of a dTDP-phenol-RmlC complex shows the substrate-binding site to be located between the two beta-sheets; this site is formed from residues of both monomers. Sequence alignments of other RmlC enzymes confirm that this region is very highly conserved. The enzyme is distinct structurally from other epimerases known and thus, is the first example of a new class of carbohydrate epimerase.

Naismith JH. 2000. Don't let politics put Diamond at risk Nature, 403 (6771), pp. 698. | Read more

Allard ST, Giraud MF, Whitfield C, Messner P, Naismith JH. 2000. The purification, crystallization and structural elucidation of dTDP-D-glucose 4,6-dehydratase (RmlB), the second enzyme of the dTDP-L-rhamnose synthesis pathway from Salmonella enterica serovar typhimurium. Acta Crystallogr D Biol Crystallogr, 56 (Pt 2), pp. 222-225. | Show Abstract | Read more

dTDP-D-glucose 4,6-dehydratase (RmlB) is the second of four enzymes involved in the dTDP-L-rhamnose pathway and catalyzes the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose. The ultimate product of the pathway, dTDP-L-rhamnose, is the precursor of L-rhamnose, which is a key component of the cell wall of many pathogenic bacteria. RmlB from Salmonella enterica serovar Typhimurium has been overexpressed and purified, and crystals of the enzyme have been grown using the sitting-drop vapour-diffusion technique with lithium sulfate as precipitant. Diffraction data have been obtained to a resolution of 2.8 A on a single frozen RmlB crystal which belongs to space group P2(1), with unit-cell parameters a = 111.85, b = 87.77, c = 145.66 A, beta = 131.53 degrees. The asymmetric unit contains four monomers in the form of two RmlB dimers with a solvent content of 62%. A molecular-replacement solution has been obtained and the model is currently being refined.

Cited:

24

Scopus

Allard STM, Giraud MF, Whitfield C, Messner P, Naismith JH. 2000. The purification, crystallization and structural elucidation of dTDP-D-glucose 4,6-dehydratase (RmlB), the second enzyme of the dTDP-L-rhamnose synthesis pathway from Salmonella enterica serovar Typhimurium Acta Crystallographica Section D: Biological Crystallography, 56 (2), pp. 222-225. | Show Abstract | Read more

dTDP-D-glucose 4,6-dehydratase (RmlB) is the second of four enzymes involved in the dTDP-L-rhamnose pathway and catalyzes the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose. The ultimate product of the pathway, dTDP-L-rhamnose, is the precursor of L-rhamnose, which is a key component of the cell wall of many pathogenic bacteria. RmlB from Salmonella enterica serovar Typhimurium has been overexpressed and purified, and crystals of the enzyme have been grown using the sitting-drop vapour-diffusion technique with lithium sulfate as precipitant. Diffraction data have been obtained to a resolution of 2.8 Å on a single frozen RmlB crystal which belongs to space group P21, with unit-cell parameters a: 111.85, b = 87.77, c = 145.66 Å, β = 131.53°. The asymmetric unit contains four monomers in the form of two RmlB dimers with a solvent content of 62%. A molecular-replacement solution has been obtained and the model is currently being refined.

Giraud MF, McMiken HJ, Leonard GA, Messner P, Whitfield C, Naismith JH. 1999. Overexpression, purification, crystallization and preliminary structural study of dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD), the fourth enzyme of the dTDP-L-rhamnose synthesis pathway, from Salmonella enterica serovar Typhimurium. Acta Crystallogr D Biol Crystallogr, 55 (Pt 12), pp. 2043-2046. | Show Abstract | Read more

L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precursor, dTDP-L-rhamnose, is synthesized from alpha-D-glucose-1-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlD catalyses the terminal step of this pathway by converting dTDP-6-deoxy-L-lyxo-4-hexulose to dTDP-L-rhamnose. RmlD from -Salmonella enterica serovar Typhimurium has been overexpressed in Escherichia coli. The recombinant protein was purified by a two--step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals of native and selenomethionine-enriched RmlD have been obtained using the sitting-drop vapour-diffusion method with polyethylene glycol as precipitant. Diffraction data have been collected from orthorhombic crystals of both native and selenomethionyl-derivatized protein, allowing tracing of the protein structure.

Cited:

41

Scopus

Giraud MF, McMiken HJ, Leonard GA, Messner P, Whitfield C, Naismith JH. 1999. Overexpression, purification, crystallization and preliminary structural study of dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD), the fourth enzyme of the dTDP-L-rhamnose synthesis pathway, from Salmonella enterica serovar typhimurium Acta Crystallographica Section D: Biological Crystallography, 55 (12), pp. 2043-2046. | Show Abstract | Read more

L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precursor, dTDP-L-rhamnose, is synthesized from α-D-glucose-L-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlD catalyses the terminal step of this pathway by converting dTDP-6-deoxy-L-lyxo-4-hexulose to dTDP-L-rhamnose. RmlD from Salmonella enterica serovar Typhimurium has been overexpressed in Escherichia coli. The recombinant protein was purified by a two-step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals of native and selenomethionine-enriched RmlD have been obtained using the sitting-drop vapour-diffusion method with polyethylene glycol as precipitant. Diffraction data have been collected from orthorhombic crystals of both native and selenomethionyl-derivatized protein, allowing tracing of the protein structure.

Cited:

200

WOS

Dimick SM, Powell SC, McMahon SA, Moothoo DN, Naismith JH, Toone EJ. 1999. On the meaning of affinity: Cluster glycoside effects and concanavalin A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 121 (44), pp. 10286-10296. | Show Abstract | Read more

The inhibition of protein-carbohydrate interaction provides a powerful therapeutic strategy for the treatment of myriad human diseases. To date, application of such approaches have been frustrated by the inherent low affinity of carbohydrate ligands for their protein receptors. Because lectins typically exist in multimeric assemblies, a variety of polyvalent saccharide ligands have been prepared in the search for high affinity. The cluster glycoside effect, or the observation of high affinity derived from multivalency in oligosaccharide ligands, apparently represents the best strategy for overcoming the 'weak binding' problem. Here we report the synthesis of a series of multivalent dendritic saccharides and a biophysical evaluation of their interaction with the plant lectin concanavalin A. Although a 30-fold enhancement in affinity on a valence-corrected basis is observed by agglutination assay, calorimetric titration of soluble protein with a range of multivalent ligands reveals no enhancement in binding free energies. Rather, IC50 values from agglutination measurements correlate well with entropies of binding. This observation suggests that hemagglutination measures a phenomenon distinct from binding that is typified by a large favorable entropy and an unfavorable enthalpy: this process is almost certainly aggregation. Supporting this assertion, we report crystal structures of multivalent ligands cross-linking concanavalin A dimers. To the best of our knowledge, these structures are the first reported of their kind. Our results indicate that hemagglutination assays evaluate the ability of ligands to inhibit the formation of cross-linked lattices, a process only tangentially related to reversible ligand binding. Cluster glycoside effects observed in agglutination assays must, therefore, be viewed with caution. Such effects may or may not be relevant to the design of therapeutically useful saccharides.

Buchanan LV, Mehta N, Pocivavsek L, Niranjanakumari S, Toone EJ, Naismith JH. 1999. Initiating a structural study of 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Acta Crystallogr D Biol Crystallogr, 55 (Pt 11), pp. 1946-1948. | Show Abstract | Read more

2-Keto-3-deoxy-6-phosphogluconate aldolase (KDPG aldolase, E.C. 4.1. 2.14) is a member of the pyruvate/phosphoenolpyruvate aldolase family. It is also a synthetically useful enzyme, capable of catalyzing the stereoselective aldol addition of pyruvate to a range of unnatural electrophilic substrates. The recombinant protein was purified by a two-step HPLC protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated the protein to be monodisperse. Crystals were obtained using the sitting-drop vapour-diffusion method, with PEG 6K as precipitant. Diffraction data were collected on a frozen crystal to a resolution of 2.26 A on station PX9.6 at the Daresbury synchrotron. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 53.2, b = 77.9, c = 146.8 A.

Buchanan LV, Mehta N, Pocivavsek L, Niranjanakumari S, Toone EJ, Naismith JH. 1999. Initiating a structural study of 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli Acta Crystallographica Section D: Biological Crystallography, 55 (11), pp. 1946-1948. | Show Abstract | Read more

2-Keto-3-deoxy-6-phosphogluconate aldolase (KDPG aldolase, E.C. 4.1.2.14) is a member of the pyruvate/phosphoenolpyruvate aldolase family. It is also a synthetically useful enzyme, capable of catalyzing the stereoselective aldol addition of pyruvate to a range of unnatural electrophilic substrates. The recombinant protein was purified by a two-step HPLC protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated the protein to be monodisperse. Crystals were obtained using the sitting-drop vapour-diffusion method, with PEG 6K as precipitant. Diffraction data were collected on a frozen crystal to a resolution of 2.26 Å on station PX9.6 at the Daresbury synchrotron. The crystal belongs to space group P212121, with unit-cell parameters a = 53.2, b = 77.9, c = 146.8 Å.

Moothoo DN, Canan B, Field RA, Naismith JH. 1999. Man alpha1-2 Man alpha-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. Glycobiology, 9 (6), pp. 539-545. | Show Abstract | Read more

We have determined the crystal structure of the methyl glycoside of Man alpha1-2 Man in complex with the carbohydrate binding legume lectin concanavalin A (Con A). Man alpha1-2 Man alpha-OMe binds more tightly to concanavalin A than do its alpha1-3 and alpha1-6 linked counterparts. There has been much speculation as to why this is so, including a suggestion of the presence of multiple binding sites for the alpha1-2 linked disaccharide. Crystals of the Man alpha1-2 Man alpha-OMe-Con A complex form in the space group P2(1)2(1)2(1) with cell dimensions a = 119.7 A, b = 119.7 A, c = 68.9 A and diffract to 2. 75A. The final model has good geometry and an R factor of 19.6% (Rfree= 22.8%). One tetramer is present in the asymmetric unit. In three of the four subunits, electron density for the disaccharide is visible. In the fourth only a monosaccharide is seen. In one subunit the reducing terminal sugar is recognized by the monosaccharide site; the nonreducing terminal sugar occupies a new site and the major solution conformation of the inter-sugar glycosidic linkage conformation is adopted. In contrast, in another subunit the non reducing terminal sugar sits in the so called monosaccharide binding site; the reducing terminal sugar adopts a different conformation about its inter-sugar glycosidic linkage in order for the methyl group to access a hydrophobic pocket. In the third subunit, electron density for both binding modes is observed. We demonstrate that an extended carbohydrate binding site is capable of binding the disaccharide in two distinct ways. These results provide an insight in to the balance of forces controlling protein carbohydrate interactions.

Cited:

56

Scopus

Moothoo DN, Canan B, Field RA, Naismith JH. 1999. Man  1-2 Man  -OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition Glycobiology, 9 (6), pp. 539-545. | Show Abstract | Read more

We have determined the crystal structure of the methyl glycoside of Man α1-2 Man in complex with the carbohydrate binding legume lectin concanavalin A (Con A). Man α1-2 Man α-OMe binds more tightly to concanavalin A than do its α1-3 and α1-6 linked counterparts. There has been much speculation as to why this is so, including a suggestion of the presence of multiple binding sites for the α1-2 linked disaccharide. Crystals of the Man α1-2 Man α-OMe-Con A complex form in the space group P212121 with cell dimensions a = 119.7 Å, b = 119.7 Å, c = 68.9 Å and diffract to 2.75Å. The final model has good geometry and an R factor of 19.6% (R(free) = 22.8%). One tetramer is present in the asymmetric unit. In three of the four subunits, electron density for the disaccharide is visible. In the fourth only a monosaccharide is seen. In one subunit the reducing terminal sugar is recognized by the monosaccharide site; the nonreducing terminal sugar occupies a new site and the major solution conformation of the inter-sugar glycosidic linkage conformation is adopted. In contrast, in another subunit the non reducing terminal sugar sits in the so called monosaccharide binding site; the reducing terminal sugar adopts a different conformation about its inter-sugar glycosidic linkage in order for the methyl group to access a hydrophobic pocket. In the third subunit, electron density for both binding modes is observed. We demonstrate that an extended carbohydrate binding site is capable of binding the disaccharide in two distinct ways. These results provide an insight in to the balance of forces controlling protein carbohydrate interactions.

McMahon SA, Leonard GA, Buchanan LV, Giraud MF, Naismith JH. 1999. Initiating a crystallographic study of UDP-galactopyranose mutase from escherichia coli. erratum Acta Crystallogr D Biol Crystallogr, 55 (5), pp. 1108. | Show Abstract | Read more

In the paper by McMahon, Leonard, Buchanan, Giraud & Naismith [Acta Cryst. (1999). D55, 399-402] an author's error has resulted in the fifth sentence of the Abstract being incorrect. The sentence should read 'They are monoclinic, space group P21, with unit-cell dimensions a = 71.12, b = 58.42, c = 96.38 A, beta = 96.38 degrees. 92% (native) and 94% (selenomethionine) complete data sets have been recorded to 2.9 A (Rmerge = 5.0%) and 3.0 A (Rmerge = 6.9%), respectively.'

Giraud MF, Gordon FM, Whitfield C, Messner P, McMahon SA, Naismith JH. 1999. Purification, crystallization and preliminary structural studies of dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC), the third enzyme of the dTDP-L-rhamnose synthesis pathway, from Salmonella enterica serovar typhimurium. Acta Crystallogr D Biol Crystallogr, 55 (Pt 3), pp. 706-708. | Show Abstract | Read more

L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precusor, dTDP-L-rhamnose, is synthesized from alpha-D-glucose-1-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlC was overexpressed in Escherichia coli. The recombinant protein was purified by a two-step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals were obtained using the sitting-drop vapour-diffusion method with ammonium sulfate as precipitant. Diffraction data were collected on a frozen crystal to a resolution of 2.17 A. The crystal belongs to either space group P3121 or P3221, with unit-cell parameters a = b = 71.56, c = 183.53 A and alpha = beta = 90, gamma = 120 degrees.

Giraud MF, Gordon FM, Whitfield C, Messner P, McMahon SA, Naismith JH. 1999. Purification, crystallization and preliminary structural studies of dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC), the third enzyme of the dTDP-L-rhamnose synthesis pathway, from Salmonella enterica serovar Typhimurium Acta Crystallographica Section D: Biological Crystallography, 55 (3), pp. 706-708. | Show Abstract | Read more

L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precusor, dTDP-L-rhamnose, is synthesized from α-D-glucose-1-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlC was overexpressed in Escherichia coli. The recombinant protein was purified by a two-step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals were obtained using the sitting-drop vapour-diffusion method with ammonium sulfate as precipitant. Diffraction data were collected on a frozen crystal to a resolution of 2.17 Å. The crystal belongs to either space group P3121 or P3221, with unit-cell parameters a = b = 71.56, c = 183.53 Å and α = β = 90, γ = 120°.

McMahon SA, Leonard GA, Buchanan LV, Giraud MF, Naismith JH. 1999. Initiating a crystallographic study of UDP-galactopyranose mutase from Escherichia coli. Acta Crystallogr D Biol Crystallogr, 55 (Pt 2), pp. 399-402. | Show Abstract | Read more

UDP-galactopyranose mutase, the enzyme responsible for the conversion of UDP-galactopyranose to UDP-galactofuranose, has been crystallized in a form suitable for X-ray diffraction studies. UDP-galactofuranose is a key component of mycobacterial cell walls. Crystals of both the native protein and a selenomethionine variant have been grown by the vapour-diffusion method in hanging drops, and diffract to beyond 3.0 A using synchrotron radiation. Equilibration was against a solution of 20%(w/v) polyethylene glycol (4K), 12%(v/v) 2--propanol, 0.1 M HEPES pH 7.6 at 293.5 K. Crystals grow as thin plates of dimensions 0.4 x 0.2 x approximately 0.02 mm. They are monoclinic [corrected], space group P21, with unit-cell dimensions a = 71. 12, b = 58.42, c = 96.38 A, beta = 96.38 degrees. 92% (native) and 94% (selenomethionine) complete data sets have been recorded to 2.9 A (Rmerge = 5.0%) and 3.0 A (Rmerge = 6.9%), respectively. The Matthews coefficient is 2.35 A3 Da-1 for a dimer in the asymmetric unit, the solvent content being 47%. Diffraction data have also been recorded on a putative platinum derivative to 3.5 A.

Cited:

20

Scopus

McMahon SA, Leonard GA, Buchanan LV, Giraud MF, Naismith JH. 1999. Initiating a crystallographic study of UDP-galactopyranose mutase from Escherichia coli Acta Crystallographica Section D: Biological Crystallography, 55 (2), pp. 399-402. | Show Abstract | Read more

UDP-galactopyranose mutase, the enzyme responsible for the conversion of UDP-galactopyranose to UDP-galactofuranose, has been crystallized in a form suitable for X-ray diffraction studies. UDP-galactofuranose is a key component of mycobacterial cell walls. Crystals of both the native protein and a selenomethionine variant have been grown by the vapour-diffusion method in hanging drops, and diffract to beyond 3.0 Å using synchrotron radiation. Equilibration was against a solution of 20% (w/v) polyethylene glycol (4K), 12% (v/v) 2-propanol, 0.1 M HEPES pH 7.6 at 293.5 K. Crystals grow as thin plates of dimensions 0.4 x 0.2 x ~ 0.02 mm. They are orthorhombic, space group P21, with unit-cell dimensions a = 71.12, b = 58.42, c = 96.38 Å, β = 96.38°. 92% (native) and 94% (selenomethionine) complete data sets have been recorded to 2.9 Å (R(merge) = 5.0%) and 3.0 Å (R(merge) = 6.9%), respectively. The Matthews coefficient is 2.35 Å3 Da-1 for a dimer in the asymmetric unit, the solvent content being 47%. Diffraction data have also been recorded on a putative platinum derivative to 3.5 Å.

Moothoo DN, Naismith JH. 1999. A general method for co-crystallization of concanavalin A with carbohydrates. Acta Crystallogr D Biol Crystallogr, 55 (Pt 1), pp. 353-355. | Show Abstract | Read more

A small grid of conditions has been developed for co-crystallization of the plant lectin concanavalin A (conA) and polysaccharides. Crystals have been obtained of complexes of conA with alpha1-2 mannobiose, 1-methyl alpha1-2 mannobiose, fructose, a trisaccharide and a pentasaccharide. The crystals diffract to resolutions of 1. 75-2.7 A using a copper rotating-anode source. The crystals are grown in the presence of polyethylene glycol 6K [10-20%(w/v)] at around pH 6.0. Optimization for each particular carbohydrate requires small adjustments in the conditions; however, all complexes give some crystalline precipitate in this limited grid. The alpha1-2 mannobiose complex crystals diffract to 1.75 A with space group I222 and cell dimensions a = 91.7, b = 86.8, c = 66.6 A. One monomer is present in the asymmetric unit. The 1-methyl alpha1-2 mannobioside complex crystallizes in space group P212121, cell dimensions a = 119. 7, b = 119.7, c = 68.9 A and diffract to 2.75 A. One tetramer is present in the asymmetric unit. Two crystal forms of the conA-fructose complex have been obtained. The first has space group P212121, cell dimensions a = 121.7, b = 119.9, c = 67.3 A with a tetramer in the asymmetric unit and diffracts to 2.6 A. The second crystallizes in space group C2221, cell dimensions a = 103.3, b = 117.9, c = 254.3 A with two dimers in the asymmetric unit and diffracts to 2.42 A. Structures and crystallization of the trisaccharide-conA and pentasaccharide-conA complexes have already been reported. In all complexes, the protein is found as a tetramer, although varying combinations of non-crystallographic and crystallographic symmetry are involved in generating the tetramer. The precise packing of the tetramer varies from crystal to crystal and it is likely that this variability facilitates crystallization.

McMahon SA, Leonard GA, Buchanan LV, Giraud MF, Naismith JH. 1999. Erratum: Initiating a crystallographic study of UDP-galactopyranose mutase from Escherichia coli (Acta Crystallographica - Section D Biological Crystallography (1999) D55 (399-402)) Acta Crystallographica Section D: Biological Crystallography, 55 (5), pp. 1108.

Moothoo DN, Naismith JH. 1999. A general method for co-crystallization of concanavalin a with carbohydrates Acta Crystallographica Section D: Biological Crystallography, 55 (1), pp. 353-355. | Show Abstract | Read more

A small grid of conditions has been developed for co-crystallization of the plant lectin concanavalin A (conA) and polysaccharides. Crystals have been obtained of complexes of conA with α1-2 mannobiose, 1-methyl α1-2 mannobiose, fructose, a trisaccharide and a pentasaccharide. The crystals diffract to resolutions of 1.75-2.7 Å using a copper rotating-anode source. The crystals are grown in the presence of polyethylene glycol 6K [10-20%(w/v)] at around pH 6.0. Optimization for each particular carbohydrate requires small adjustments in the conditions; however, all complexes give some crystalline precipitate in this limited grid. The α1-2 mannobiose complex crystals diffract to 1.75 Å with space group I222 and cell dimensions a: 91.7, b = 86.8, c = 66.6 Å. One monomer is present in the asymmetric unit. The 1-methyl α1-2 mannobioside complex crystallizes in space group P212121, cell dimensions a = 119.7, b = 119.7, c= 68.9 Å and diffract to 2.75 Å. One tetramer is present in the asymmetric unit. Two crystal forms of the conA-fructose complex have been obtained. The first has space group P212121, cell dimensions a = 121.7, b = 119.9, c = 67.3 Å with a tetramer in the asymmetric unit and diffracts to 2.6 Å. The second crystallizes in space group C2221, cell dimensions a = 103.3, b = 117.9, c = 254.3 with two dimers in the asymmetric unit and diffracts to 2.42 Å. Structures and crystallization of the trisaccharide-conA and pentasaccharide-conA complexes have already been reported. In all complexes, the protein is found as a tetramer, although varying combinations of non-crystallographic and crystallographic symmetry are involved in generating the tetramer. The precise packing of the tetramer varies from crystal to crystal and it is likely that this variability facilitates crystallization.

Moothoo DN, McMahon SA, Dimick SM, Toone EJ, Naismith JH. 1998. Crystallization of succinylated concanavalin A bound to a synthetic bivalent ligand and preliminary structural analysis. Acta Crystallogr D Biol Crystallogr, 54 (Pt 5), pp. 1023-1025. | Show Abstract | Read more

Crystals have been obtained of succinylated concanavalin A complexed to a novel bidentate synthetic ligand. The crystals are the first example of a lectin with a synthetic multivalent ligand and the first report of crystallization of succinylated concanavalin A. The crystals were obtained by sitting-drop vapour diffusion equilibrating with a solution of 20% polyethylene glycol, pH 5, 293. 5 K. Crystals are orthorhombic, belonging to space group C2221 with unit-cell dimensions of a = 99.1, b = 127.4, c = 118.9 A. The asymmetric unit contains a dimer, with over 65% of the volume occupied by water. The ligand cross links concanavalin A monomers. Succinylated concanavalin A is known to be a dimer in solution, yet it is found as the typical concanavalin A tetramer in the crystal. The contacts holding together the tetramer appear extensive and suggest that a fine balance between dimer and tetramers exists. Data to 2.65 A have been collected and the structure determined by the molecular replacement method.

Giraud MF, Desterro JM, Naismith JH. 1998. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr D Biol Crystallogr, 54 (Pt 5), pp. 891-898. | Show Abstract | Read more

The three-dimensional structure of ubiquitin-conjugating enzyme 9 (Ubc9) has been obtained to a resolution of 2.8 A by molecular replacement followed by a combination of automated refinement and graphical intervention. Diffraction data were recorded on a single crystal in space group P43 with cell dimensions a = b = 73.9, c = 42. 9 A. The final model has an R factor of 21.3% for all data to 2.8 A. Only the N-terminal methionine, a two-residue N-terminal extension and a four-residue loop are not located by the final electron-density map. Ubc9 is now known to be the first sumo, a new ubiquitin-like protein, conjugating enzyme and does not conjugate ubiquitin. The structure of Ubc9 shows important differences compared with the structures of known ubiquitin-conjugating enzymes. At the N-terminal helix, the structural and sequence alignments are out of register by one amino acid giving Ubc9 a different recognition surface compared to ubiquitin-conjugating enzymes. This is coupled to a profound change in the electrostatic surface of the molecular face remote from the catalytic site. These differences may be important in recognition of other proteins in the Sumo conjugation pathway. The catalytic cysteine in Ubc9 has a positively charged lip and a negatively charged ridge nearby. Both these features seem confined to sumo-conjugating enzymes, and a sequence alignment of sumo and ubiquitin suggests how these might play a role in sumo/ubiquitin discrimination.

Moothoo DN, McMahon SA, Dimick SM, Toone EJ, Naismith JH. 1998. Crystallization of succinylated concanavalin A bound to a synthetic bivalent ligand and preliminary structural analysis Acta Crystallographica Section D: Biological Crystallography, 54 (5), pp. 1023-1025. | Show Abstract | Read more

Crystals have been obtained of succinylated concanavalin A complexed to a novel bidentate synthetic ligand. The crystals are the first example of a lectin with a synthetic multivalent ligand and the first report of crystallization of succinylated concanavalin A. The crystals were obtained by sitting-drop vapour diffusion equilibrating with a solution of 20% polyethylene glycol, pH 5, 293.5 K. Crystals are orthorhombic, belonging to space group C2221 with unit-cell dimensions of a = 99.1, b = 127.4, c = 118.9 Å. The asymmetric unit contains a dimer, with over 65% of the volume occupied by water. The ligand cross links concanavalin A monomers. Succinylated concanavalin A is known to be a dimer in solution, yet it is found as the typical concanavalin A tetramer in the crystal. The contacts holding together the tetramer appear extensive and suggest that a fine balance between dimer and tetramers exists. Data to 2.65 Å have been collected and the structure determined by the molecular replacement method.

Cited:

50

Scopus

Giraud MF, Desterro JMP, Naismith JH. 1998. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin Acta Crystallographica Section D: Biological Crystallography, 54 (5), pp. 891-898. | Show Abstract | Read more

The three-dimensional structure of ubiquitin-conjugating enzyme 9 (Ubc9) has been obtained to a resolution of 2.8 Å by molecular replacement followed by a combination of automated refinement and graphical intervention. Diffraction data were recorded on a single crystal in space group P43 with cell dimensions a = b = 73.9, c = 42.9 Å. The final model has an R factor of 21.3% for all data to 2.8 Å. Only the N-terminal methionine, a two-residue N-terminal extension and a four-residue loop are not located by the final electron-density map. Ubc9 is now known to be the first sumo, a new ubiquitin-like protein, conjugating enzyme and does not conjugate ubiquitin. The structure of Ubc9 shows important differences compared with the structures of known ubiquitin-conjugating enzymes. At the N-terminal helix, the structural and sequence alignments are out of register by one amino acid giving Ubc9 a different recognition surface compared to ubiquitin-conjugating enzymes. This is coupled to a profound change in the electrostatic surface of the molecular face remote from the catalytic site. These differences may be important in recognition of other proteins in the Sumo conjugation pathway. The catalytic cysteine in Ubc9 has a positively charged lip and a negatively charged ridge nearby. Both these features seem confined to sumo-conjugating enzymes, and a sequence alignment of sumo and ubiquitin suggests how these might play a role in sumo/ubiquitin discrimination.

Singh J, Garber E, Van Vlijmen H, Karpusas M, Hsu YM, Zheng Z, Naismith JH, Thomas D. 1998. The role of polar interactions in the molecular recognition of CD40L with its receptor CD40. Protein Sci, 7 (5), pp. 1124-1135. | Show Abstract | Read more

CD40 Ligand (CD40L) is transiently expressed on the surface of T-cells and binds to CD40, which is expressed on the surface of B-cells. This binding event leads to the differentiation, proliferation, and isotype switching of the B-cells. The physiological importance of CD40L has been demonstrated by the fact that expression of defective CD40L protein causes an immunodeficiency state characterized by high IgM and low IgG serum levels, indicating faulty T-cell dependent B-cell activation. To understand the structural basis for CD40L/CD40 association, we have used a combination of molecular modeling, mutagenesis, and X-ray crystallography. The structure of the extracellular region of CD40L was determined by protein crystallography, while the CD40 receptor was built using homology modeling based upon a novel alignment of the TNF receptor superfamily, and using the X-ray structure of the TNF receptor as a template. The model shows that the interface of the complex is composed of charged residues, with CD40L presenting basic side chains (K143, R203, R207), and CD40 presenting acidic side chains (D84, E114, E117). These residues were studied experimentally through site-directed mutagenesis, and also theoretically using electrostatic calculations with the program Delphi. The mutagenesis data explored the role of the charged residues in both CD40L and CD40 by switching to Ala (K143A, R203A, R207A of CD40L, and E74A, D84A, E114A, E117A of CD40), charge reversal (K143E, R203E, R207E of CD40L, and D84R, E114R, E117R of CD40), mutation to a polar residue (K143N, R207N, R207Q of CD40L, and D84N, E117N of CD40), and for the basic side chains in CD40L, isosteric substitution to a hydrophobic side chain (R203M, R207M). All the charge-reversal mutants and the majority of the Met and Ala substitutions led to loss of binding, suggesting that charged interactions stabilize the complex. This was supported by the Delphi calculations which confirmed that the CD40/CD40L residue pairs E74-R203, D84-R207, and E117-R207 had a net stabilizing effect on the complex. However, the substitution of hydrophilic side chains at several of the positions was tolerated, which suggests that although charged interactions stabilize the complex, charge per se is not crucial at all positions. Finally, we compared the electrostatic surface of TNF/TNFR with CD40L/CD40 and have identified a set of polar interactions surrounded by a wall of hydrophobic residues that appear to be similar but inverted between the two complexes.

Naismith JH, Sprang SR. 1998. Modularity in the TNF-receptor family. Trends Biochem Sci, 23 (2), pp. 74-79. | Show Abstract | Read more

Tumour necrosis factor (TNF) receptor family members regulate processes that range from cell proliferation to programmed cell death. The extracellular, ligand-binding domains of these proteins consist of small, cysteine-rich subdomains, first observed in the three-dimensional structures of the type I TNF receptor. A structure-based alignment of TNFR family members indicates that the extracellular domains are constructed primarily of two small polypeptide modules. These modules play distinctive structural roles in the architecture of the domains. Analogues of at least one of these modules can be found in the domains of other receptors and extracellular proteins. Variations in their sequence and order of assembly are expected to account for differences in shape, flexibility and ligand specificity.

Moothoo DN, Naismith JH. 1998. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Glycobiology, 8 (2), pp. 173-181. | Show Abstract | Read more

Carbohydrate recognition by proteins is a key event in many biological processes. Concanavalin A is known to specifically recognize the pentasaccharide core (beta-GlcNAc-(1-->2)-alpha- Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man) of N-linked oligosaccharides with a Ka of 1.41 x 10(6 )M-1. We have determined the structure of concanavalin A bound to beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man to 2.7A. In six of eight subunits there is clear density for all five sugar residues and a well ordered binding site. The pentasaccharide adopts the same conformation in all eight subunits. The binding site is a continuous extended cleft on the surface of the protein. Van der Waals interactions and hydrogen bonds anchor the carbohydrate to the protein. Both GlcNAc residues contact the protein. The GlcNAc on the 1-->6 arm of the pentasaccharide makes particularly extensive contacts and including two hydrogen bonds. The binding site of the 1-->3 arm GlcNAc is much less extensive. Oligosaccharide recognition by Con A occurs through specific protein carbohydrate interactions and does not require recruitment of adventitious water molecules. The beta-GlcNAc-(1-->2)-Man glycosidic linkage PSI torsion angle on the 1-->6 arm is rotated by over 50 degrees from that observed in solution. This rotation is coupled to disruption of interactions at the monosaccharide site. We suggest destabilization of the monosaccharide site and the conformational strain reduces the free energy liberated by additional interactions at the 1-->6 arm GlcNAc site.

Cited:

74

Scopus

Moothoo DN, Naismith JH. 1998. Concanavalin A distorts the  -GlcNAc-(1->2)-Man linkage of  -GlcNAc-(1->2)- -Man-(1->3)-[ -GlcNAc-(1->2)- -Man-(1->6)]-Man upon binding Glycobiology, 8 (2), pp. 173-181. | Show Abstract | Read more

Carbohydrate recognition by proteins is a key event in many biological processes. Concanavalin A is known to specifically recognize the pentasaccharide core (β-GlcNAc-(1→2)-α-Man-(1→3)-[β-GlcNAc-(1→2)-α-Man-(1→6)]-Man) of N-linked oligosaccharides with a K(a) of 1.41 x 106 M-1. We have determined the structure of concanavalin A bound to β-GlcNAc-(1→2)-α-Man-(1→3)-[β-GlcNAc(1→2)-α-Man-(1→6)]-Man to 2.7 Å. In six of eight subunits there is clear density for all five sugar residues and a well ordered binding site. The pentasaccharide adopts the same conformation in all eight subunits. The binding site is a continuous extended cleft on the surface of the protein. Van der Waals interactions and hydrogen bonds anchor the carbohydrate to the protein. Both GlcNAc residues contact the protein. The GlcNAc on the 1→6 arm of the pentasaccharide makes particularly extensive contacts and including two hydrogen bonds. The binding site of the 1→3 arm GlcNAc is much less extensive. Oligosaccharide recognition by Con A occurs through specific protein carbohydrate interactions and does not require recruitment of adventitious water molecules. The β-GlcNAc-(1→2)-Man glycosidic linkage PSI torsion angle on the 1→6 arm is rotated by over 50°from that observed in solution. This rotation is coupled to disruption of interactions at the monosaccharide site. We suggest destabilization of the monosaccharide site and the conformational strain reduces the free energy liberated by additional interactions at the 1→6 arm GlcNAc site.

Harrison JA, Kartha KP, Smith SL, Naismith JH, Schenkman S, Field RA. 1997. Development of a high through-put spectrophotometric assay to monitor Trypanosoma cruzi trans-sialidase. Biochem Soc Trans, 25 (3), pp. 424S. | Read more

Naismith JH, Devine TQ, Kohno T, Sprang SR. 1996. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure, 4 (11), pp. 1251-1262. | Show Abstract | Read more

BACKGROUND: Tumor necrosis factor (TNF) is a powerful cytokine that is involved in immune and pro-inflammatory responses. Two TNF receptors that belong to the cysteine-rich low affinity nerve growth factor receptor family (TNF-R1 and TNF-R2) are the sole mediators of TNF signalling. Signalling is thought to occur when a trimer of TNF binds to the extracellular domains of two or three receptor molecules, which permits aggregation and activation of the cytoplasmic domains. The complex is then internalized within an endocytic vesicle, whereupon it dissociates at low pH. Structure of the soluble extracellular domain of the receptor (sTNF-R1) both in the unliganded and TNF-bound state have previously been determined. In both instances, the fourth subdomain of the receptor was found to be partly disordered. In the unliganded state at pH 7.5, the extracellular domain forms two distinct types of dimer, parallel and antiparallel; the antiparallel dimer occludes the TNF-binding. RESULTS: We have determined the structure of sTNF-R1 in two crystal forms in high salt at pH 3.7. The orthorhombic crystals diffract to 1.85 ånd the entire polypeptide is well ordered. In contrast, the C-terminal 32 residues are disordered in the hexagonal crystals. In the orthorhombic form, these residues exhibit a topology and disulphide connectivity that differs from the other three cysteine-rich domains in the molecule. In both forms, the interface is considerably more extensive than that used in complex formation with LTalpha. This 'low pH' dimer is different from both of the dimers observed in crystals grown at pH 7.5. CONCLUSIONS: The occurrence of the antiparallel dimers in both low pH crystal forms suggest that they are not an artefact of crystal packing. Such dimers may form in the low pH environment of the endosome. Because the dimer contact surface occludes the TNF-binding site, formation of this dimer would dissociate the TNF-receptor complex within the endosome. Three of the four cysteine-rich domains of TNF-R1 are constructed from two distinct structural modules, termed A1 and B2. The fourth subdomain comprises an A1 module followed by an unusual C2 module. Although the orientation of these modules with respect to each other is sensitive to crystal packing, ligand binding, pH and ionic strength, the modules are structurally well conserved between and within the known sTNF-R1 structures.

Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN. 1996. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure, 4 (11), pp. 1303-1315. | Show Abstract | Read more

BACKGROUND: [corrected] Aldolases catalyze a variety of condensation and cleavage reactions, with exquisite control on the stereochemistry. These enzymes, therefore, are attractive catalysts for synthetic chemistry. There are two classes of aldolase: class I aldolases utilize Schiff base formation with an active-site lysine whilst class II enzymes require a divalent metal ion, in particular zinc. Fructose-1,6-bisphosphate aldolase (FBP-aldolase) is used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. Structures are available for class I FBP-aldolases but there is a paucity of detail on the class II enzymes. Characterization is sought to enable a dissection of structure/activity relationships which may assist the construction of designed aldolases for use as biocatalysts in synthetic chemistry. RESULTS: The structure of the dimeric class II FBP-aldolase from Escherichia coli has been determined using data to 2.5 A resolution. The asymmetric unit is one subunit which presents a familiar fold, the (alpha/beta)8 barrel. The active centre, at the C-terminal end of the barrel, contains a novel bimetallic-binding site with two metal ions 6.2 A apart. One ion, the identity of which is not certain, is buried and may play a structural or activating role. The other metal ion is zinc and is positioned at the surface of the barrel to participate in catalysis. CONCLUSIONS: Comparison of the structure with a class II fuculose aldolase suggests that these enzymes may share a common mechanism. Nevertheless, the class II enzymes should be subdivided into two categories on consideration of subunit size and fold, quaternary structure and metal-ion binding sites.

Naismith JH, Brandhuber BJ, Devine TQ, Sprang SR. 1996. Seeing double: crystal structures of the type I TNF receptor. J Mol Recognit, 9 (2), pp. 113-117. | Show Abstract | Read more

The crystal structure of the extracellular domain of the type I tumor necrosis factor receptor (sTNF-R1) has been determined to 2.25 A at pH 7.5. We have also solved the structure of sTNF-R1 at pH 3.7. sTNF-R1 is an elongated molecule consisting of a linear combination of four cysteine-rich motifs. Interestingly, the crystal structure reveals two distinct dimers of the receptor. One dimer is formed by a parallel arrangement of receptors, the other by an antiparallel arrangement of receptors. In the parallel arrangement of the receptors, the tumor necrosis factor (TNF) binding face of the receptor is completely exposed to solvent. However, in the antiparallel arrangement, the TNF binding face is intimately involved in the dimer interactions. Details of these recognition surfaces are discussed. Both these dimer interactions bury substantial surface area, comprise polar and apolar contact surfaces and have complimentary recognition surfaces. Thus these interactions are typical of genuine protein-protein interactions, rather than crystal packing contacts. These dimers may function to inhibit signal transduction in the absence of TNF or in the case of the parallel dimer, promote clustering of TNF/TNF receptor complexes on the cell surface.

Naismith JH, Field RA. 1996. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem, 271 (2), pp. 972-976. | Show Abstract | Read more

Despite the fact that complex saccharides play an important role in many biological recognition processes, molecular level descriptions of protein-carbohydrate interactions are sparse. The legume lectin concanavalin A (con A), from Canavalia ensiformis, specifically recognizes the trimannoside core of many complex glycans. We have determined the crystal structure of a con A-trimannoside complex at 2.3-A resolution now describe the trimannoside interaction with conA. All three sugar residues are in well defined difference electron density. The 1,6-linked mannose residue is bound at the previously reported monosaccharide binding site; the other two sugars bind in an extended cleft formed by residues Tyr-12, Pro-13, Asn-14, Thr-15, and Asp-16. Hydrogen bonds are formed between the protein and all three sugar residues. In particular, the 1,3-linked mannose residue makes a strong hydrogen bond with the main chain of the protein. In addition, a water molecule, which is conserved in other con A structures, plays an important role in anchoring the reducing sugar unit to the protein. The complex is further stabilized by van der Waals interactions. The structure provides a rationale for the high affinity of con A for N-linked glycans.

Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR. 1995. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem, 270 (22), pp. 13303-13307. | Show Abstract | Read more

Activation of the cell surface receptors for tumor necrosis factor (TNF) is effected by the aggregation of cytoplasmic domains that occurs when the extracellular domains of two or three receptors bind to trimeric TNF alpha or TNF beta. The structure of the type I TNF receptor extracellular domain (sTNF-R1), crystallized in the absence of TNF, has now been determined at 2.25-A resolution. The receptor itself is an elongated molecule comprising four disulfide-rich domains in a nearly linear array. Contrary to expectations, the unliganded domains are found to associate into dimers of two distinct types, in which monomers are related by local two-fold axes of symmetry. In one case, the receptors are antiparallel to each other and associate through an interface that overlaps the TNF binding site. If intact receptors were capable of such an association, their cytoplasmic domains would be separated by over 100 A. This interaction could inhibit signaling in the absence of TNF. Parallel dimers are also observed in which the dimer interface is well separated from the TNF binding site. Associations among TNF-bound parallel dimers could cause receptor clustering. Both dimers bury substantial areas of protein surface and are formed by polar and non-polar interactions.

Naismith JH, Sprang SR. 1995. Tumor necrosis factor receptor superfamily. J Inflamm, 47 (1-2), pp. 1-7. | Show Abstract

Tumor necrosis factor (TNF) is a powerful cytokine which is involved in the immune and pro-inflammatory response. The TNF receptors (TNF-R1 and TNF-R2) are the sole mediators of TNF signaling. The receptors consist of a disulfide rich domain which recognizes TNF, a transmembrane helix, and a cytoplasmic domain. Signaling occurs when a TNF trimer binds two or three receptors in an extracellular complex which permits aggregation and activation of the cytoplasmic domains. The complex is then endocytosed where it dissociates at low pH. We have now determined the structure of the soluble extracellular domain of TNF-R1 in two crystal forms at pH 3.7 in addition to our earlier report of one form at pH 7.5. One low pH form diffracts to 1.85 A and the entire polypeptide sequence has now been traced for this protein. The C-terminal 20 residues of the protein which were disordered in all previous structures show a different topology and disulfide connectivity to that seen in the remainder of the structure. In all crystal forms, the uncomplexed soluble extracellular domain of the type I TNF-R (sTNF-R1) exists as a dimer. At low pH the dimer buries a large amount of solvent accessible surface (2,900 A2), over 800 A2 greater than the area buried by TNF complexation. This dimer at low pH is different than both dimers observed in our previous pH 7.5 structure of unliganded sTNF-R1. We suggest that the low pH dimer forms during endocytosis and as the dimer completely buries the TNF interaction surface, the dimer would break up the receptor TNF complex. We have identified two distinct structural modules in sTNF-R1, a type A and a type B module. We suggest that these modules are the unit of structural conservation rather than the 6 cysteine subdomain. Although the orientation of these modules with respect to each other is sensitive to crystal packing, complexation, and pH, the modules themselves are structurally well conserved between and within the known sTNF-R1 structures. This modular approach will allow us to build accurate models for all members of the TNF-R superfamily.

Naismith JH, Emmerich C, Habash J, Harrop SJ, Helliwell JR, Hunter WN, Raftery J, Kalb AJ, Yariv J. 1994. Refined structure of concanavalin A complexed with methyl alpha-D-mannopyranoside at 2.0 A resolution and comparison with the saccharide-free structure. Acta Crystallogr D Biol Crystallogr, 50 (Pt 6), pp. 847-858. | Show Abstract | Read more

The three-dimensional structure of the complex between methyl alpha-D-mannopyranoside and concanavalin A has been refined at 2.0 A resolution. Diffraction data were recorded from a single crystal (space group P2(1)2(1)2(1), a = 123.7, b = 128.6, c = 67.2 A) using synchrotron radiation at a wavelength of 1.488 A. The final model has good geometry and an R factor of 19.9% for 58 871 reflections (82% complete), within the resolution limits of 8 to 2 A, with F > 1.0sigma(F). The asymmetric unit contains four protein subunits arranged as a dimer of dimers with approximate 222 point symmetry. Each monomer binds one saccharide molecule. Each sugar is bound to the protein by hydrogen bonds and van der Waals contacts. Although the four subunits are not crystallographically equivalent, the protein-saccharide interactions are nearly identical in each of the four binding sites. The differences that do occur between the four sites are in the structure of the water network which surrounds each saccharide; these networks are involved in crystal packing. The structure of the complex is compared with a refined saccharide-free concanavalin A structure. The saccharide-free structure is composed of crystallographically identical subunits, again assembled as a dimer of dimers, but with exact 222 symmetry. In the saccharide complex the tetramer association is different in that the monomers tend to separate resulting in fewer intersubunit interactions. The average temperature factor of the mannoside complex is considerably higher than that of the saccharide-free protein. The binding site in the saccharide-free structure is occupied by three ordered water molecules and the side chain of Asp71 from a neighbouring molecule in the crystal. These occupy positions similar to those of the four saccharide hydroxyls which are hydrogen bonded to the site. Superposition of the saccharide-binding site from each structure shows that the major changes on binding involve expulsion of these ordered solvents and the reorientation of the side chain of Tyrl00. Overall the surface accessibility of the saccharide decreases from 370 to 100 A(2) when it binds to the protein. This work builds upon the earlier studies of Derewenda et al. [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan & Campbell (1989). EMBO J. 8, 2198-2193] at 2.9 A resolution, which was the first detailed study of lectin-saccharide interactions.

Emmerich C, Helliwell JR, Redshaw M, Naismith JH, Harrop SJ, Raftery J, Kalb AJ, Yariv J, Dauter Z, Wilson KS. 1994. High-resolution structures of single-metal-substituted concanavalin A: the Co,Ca-protein at 1.6 A and the Ni,Ca-protein at 2.0 A. Acta Crystallogr D Biol Crystallogr, 50 (Pt 5), pp. 749-756. | Show Abstract | Read more

The molecular structures of cobalt- and nickel-substituted concanavalin A have been refined at 1.6 and 2.0 A resolution, respectively. Both metal derivatives crystallize in space group I222 with approximate cell dimensions a = 89, b = 87 and c = 63 A and one monomer in the asymmetric unit. The final R factor for Co-substituted concanavalin A is 17.8% for 29 211 reflections with F > 1.0sigma(F) between 8.0 and 1.6 A. For Ni-substituted concanavalin A the final R factor is 15.9% for 16 128 reflections with F > 1.0sigma(F) between 8.0 and 2.0 A resolution. Both structures contain a transition-metal binding site and a calcium-binding site but, unlike Cd-substituted concanavalin A, do not have a third metal-binding site. The Co-substituted concanavalin A structure diffracts to the highest resolution of any concanavalin A structure reported to date. A comparison of the structures of Ni-, Co-, Cd-substituted and native concanavalin A gives an indication of coordinate errors, which is a useful baseline for comparisons with saccharide complexes of concanavalin A described in other work. We also give a detailed account of multiple conformations which were found for five side-chain residues.

Rodseth LE, Brandhuber B, Devine TQ, Eck MJ, Hale K, Naismith JH, Sprang SR. 1994. Two crystal forms of the extracellular domain of type I tumor necrosis factor receptor. J Mol Biol, 239 (2), pp. 332-335. | Show Abstract | Read more

The soluble extracellular domain of human type I tumor necrosis factor receptor (sTNFrI) is a 161 residue polypeptide found in serum and urine. This domain tightly binds tumor necrosis factors (TNF) alpha and beta and, as part of the whole receptor, initiates the powerful biological effects of TNF. The extracellular domain, typical of other TNF receptor superfamily members, comprises four cysteine-rich motifs. We have obtained two crystal forms of the sTNFrI. One crystal form is grown at pH 3.7 with MgSO4 as the precipitant. These crystals are orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 78.5 A, b = 85.5 A and c = 67.5 A. A data set to 2.0 resolution has been collected for these crystals. Tetragonal crystals, space group P4(1)2(1)2 (or P4(3)2(1)2), with unit cell dimensions a = 69.0 A and c = 185.5 A are obtained using methylpentanediol as precipitant at pH 8.5. Data to 2.8 A have been measured from these crystals. It appears that both unit cells may contain two molecules in the asymmetric unit. These crystal structures of sTNFrI may reveal possible conformational differences between receptor localized on the cell surface (high pH), the receptor in the endosomal compartments (low pH) and the receptor in a complex with tumor necrosis factor beta. An accurate structure of the receptor and an understanding of its mechanism will provide a basis for rational drug design.

NAISMITH JH, HABASH J, HARROP S, HELLIWELL JR, HUNTER WN, WAN TCM, WEISGERBER S, KALB AJ, YARIV J. 1994. REFINED STRUCTURE OF CADMIUM-SUBSTITUTED CONCANAVALIN-A AT 2.0 ANGSTROM RESOLUTION (VOL D49, PG 561, 1993) ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 50 (2), pp. 236-236. | Read more

Cited:

70

Scopus

ARMSTRONG EM, BEDDOES RL, CALVIOU LJ, CHARNOCK JM, COLLISON D, ERTOK N, NAISMITH JH, GARNER CD. 1993. THE CHEMICAL NATURE OF AMAVADIN JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 115 (2), pp. 807-808. | Read more

Naismith JH, Habash J, Harrop S, Helliwell JR, Hunter WN, Wan TC, Weisgerber S, Kalb AJ, Yariv J. 1993. Refined structure of cadmium-substituted concanavalin A at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr, 49 (Pt 6), pp. 561-571. | Show Abstract | Read more

The three-dimensional structure of cadmium-substituted concanavalin A has been refined using X-PLOR. The R factor on all data between 8 and 2 A is 17.1%. The protein crystallizes in space group I222 with cell dimensions a = 88.7, b = 86.5 and c = 62.5 A and has one protein subunit per asymmetric unit. The final structure contains 237 amino acids, two Cd ions, one Ca ion and 144 water molecules. One Cd ion occupies the transition-metal binding site and the second occupies an additional site, the coordinates of which were first reported by Weinzierl & Kalb [FEBS Lett. (1971), 18, 268-270]. The additional Cd ion is bound with distorted octahedral symmetry and bridges the cleft between the two monomers which form the conventional dimer of concanavalin A. This study provides a detailed analysis of the refined structure of saccharide-free concanavalin A and is the basis for comparison with saccharide complexes reported elsewhere.

Zhang Y, Bailey S, Naismith JH, Bond CS, Habash J, McLaughlin P, Papiz MZ, Borges A, Cunningham M, Fairlamb AH. 1993. Trypanosoma cruzi trypanothione reductase. Crystallization, unit cell dimensions and structure solution. J Mol Biol, 232 (4), pp. 1217-1220. | Show Abstract | Read more

We have reproducibly crystallized recombinant trypanothione reductase from Trypanosoma cruzi. Yellow tetragonal crystals in the shape of elongated prisms have unit cell dimensions of a = 92.8 A, c = 156.6 A, Laue symmetry of 4/m and are suitable for a detailed structural analysis. Diffraction data to 2.7 A resolution have been recorded using synchrotron radiation at the Daresbury laboratory. The structure has been solved by molecular replacement calculations using this synchrotron data and our previously determined Crithidia fasciculata enzyme structure as a search model. The space group has been identified as P4(3) with a homodimer of approximate molecular mass of 108 kDa in the asymmetric unit. Diffraction beyond 2.5 A has been recorded when large freshly grown crystals are exposed to X-rays. Refinement of the structure is in progress.

Naismith JH, Ferrara JD, Bailey S, Marshall K, Dauter Z, Wilson KS, Habash J, Harrop SJ, Berry AJ, Hunter WN. 1992. Initiating a crystallographic study of a class II fructose-1,6-bisphosphate aldolase. J Mol Biol, 225 (4), pp. 1137-1141. | Show Abstract | Read more

We have reproducibly crystallized the metal-dependent Class II fructose-1,6-bisphosphate aldolase from Escherichia coli. Crystals in the shape of truncated hexagonal bipyramids have unit cell dimensions of a = b = 78.4 A, c = 290.6 A and are suitable for a detailed structural analysis. The space group has been identified as P6(1)22 or enantiomorph. Data sets to approximately 2.9 A resolution have been recorded using both the Rigaku R-AXIS IIc image plate area detector coupled to a copper target rotating anode X-ray source and using the MAR image plate systems with synchrotron radiation at the EMBL outstation DESY in Hamburg, and at S.R.S. Daresbury. Diffraction beyond 2.5 A has been observed when large freshly grown crystals are used with the synchrotron beam. A data set to this resolution has been collected. Several putative heavy-atom derivative data sets have also been measured using synchrotron radiation facilities and analysis of these data sets is in progress.

van der Merwe PA. 1988. Tumour necrosis factor. S Afr Med J, 74 (8), pp. 411-417. | Show Abstract | Read more

The recent discovery of tumour necrosis factor has been a major advance in the understanding of the biology of the immunological system. A review of this macrophage-secreted polypeptide hormone may be of special interest to clinicians because it appears to play a role in several important disease processes and holds considerable promise as a therapeutic tool.

3285

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk