register interest

Dr Sarah De Val

Research Area: Transcription biology
Technology Exchange: Bioinformatics, Immunohistochemistry, In situ hybridisation, In vivo imaging, Microscopy (Confocal), Transcript profiling and Transgenesis
Scientific Themes: Physiology, Cellular & Molecular Biology and Cancer Biology
Keywords: Angiogenesis, Cancer, Transcriptional regulation, Endothelial cells, Lineage specification and Developmental biology
Web Links:
Our laboratory uses both transgenic zebrafish and transgenic mice to investigate the transcriptional regulation of genes in the vasculature. In this figures, a vascular-specific enhancer is driving GFP expression (greeen) in transgenic zebrafish, and LacZ expression (blue) in transgenic mice. Histological analysis of transient sections demonstrates the endothelial cell (ec) specificity of expression.

Our laboratory uses both transgenic zebrafish and transgenic mice to investigate the ...

The goal of my laboratory is to understand how blood vessels grow, differentiate and regress through studying the transcriptional regulation of vascular genes. 

The vascular system is a highly branched network of endothelial cell-lined tubes that transports blood, metabolites and waste products throughout the body. In addition to being essential for embryonic development, the formation of new blood vessels is required after injury, during tissue regrowth and repair, and for the growth and spread of solid tumours. However, our ability to manipulate vessel growth for therapeutic aims is hampered by a poor understanding of the mechanisms regulating vessel growth in both physiological and pathological contexts.

To study vessel regulation, my laboratory primarily focuses on the identification, characterization and delineation of enhancers (cis-regulatory elements) directing gene expression within the vasculature. Enhancers are densely clustered groups of transcription factor binding motifs and are the principal regulators of spatio-temporal patterns of gene transcription. Analysis of the proteins that activate and repress different enhancers is combined with genetic studies to accurately position these factors within complex signalling networks. We are using this approach to understand what makes blood vessels molecularly different from each other, to determine the signalling cascades involved at different stages of vessel growth, and to study these processes during tumour formation and growth. 

This work involves a variety of model systems including transgenic mouse and zebrafish, tissue culture and in silico analysis.

Name Department Institution Country
Professor Colin R Goding Oxford Ludwig Institute Oxford University, Old Road Campus Research Building United Kingdom
Professor Xin Lu Oxford Ludwig Institute Oxford University, Old Road Campus Research Building United Kingdom
Prof Roger Patient (RDM) Nuffield Division of Clinical Laboratory Sciences Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Dr Adrian L Harris (MPLS) University of Oxford United Kingdom
Professor Gareth Bond Oxford Ludwig Institute Oxford University, Old Road Campus Research Building United Kingdom
Chiang IK-N, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D et al. 2017. Correction: SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development doi: 10.1242/dev.146241. Development, 144 (20), pp. 3847-3848. | Read more

Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AA, Holmes K, Salim AA et al. 2017. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. Elife, 6 | Show Abstract | Read more

Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.

Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E et al. 2016. MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev, 30 (20), pp. 2297-2309. | Show Abstract | Read more

Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.

Zhang P, Stracquadanio G, Wang X, Pybus M, Zeron-Medina J, Nornes S, Moore S, Bi Y, Wallace M, Bond E et al. 2016. Pro-survival p53 target genes have evolved clusters of interacting polymorphic response elements that can affect cancer risk European Journal of Cancer, 61 pp. S110-S110. | Read more

Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. 2016. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Arterioscler Thromb Vasc Biol, 36 (6), pp. 1209-1219. | Show Abstract | Read more

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.

Robinson AS, Materna SC, Barnes RM, De Val S, Xu S-M, Black BL. 2014. An arterial-specific enhancer of the human endothelin converting enzyme 1 (ECE1) gene is synergistically activated by Sox17, FoxC2, and Etv2. Dev Biol, 395 (2), pp. 379-389. | Show Abstract | Read more

Endothelin-converting enzyme-1 (Ece-1), a crucial component of the Endothelin signaling pathway, is required for embryonic development and is an important regulator of vascular tone, yet the transcriptional regulation of the ECE1 gene has remained largely unknown. Here, we define the activity and regulation of an enhancer from the human ECE1 locus in vivo. The enhancer identified here becomes active in endothelial progenitor cells shortly after their initial specification and is dependent on a conserved FOX:ETS motif, a composite binding site for Forkhead transcription factors and the Ets transcription factor Etv2, for activity in vivo. The ECE1 FOX:ETS motif is bound and cooperatively activated by FoxC2 and Etv2, but unlike other described FOX:ETS-dependent enhancers, ECE1 enhancer activity becomes restricted to arterial endothelium and endocardium by embryonic day 9.5 in transgenic mouse embryos. The ECE1 endothelial enhancer also contains an evolutionarily-conserved, consensus SOX binding site, which is required for activity in transgenic mouse embryos. Importantly, the ECE1 SOX site is bound and activated by Sox17, a transcription factor involved in endothelial cell differentiation and an important regulator of arterial identity. Moreover, the ECE1 enhancer is cooperatively activated by the combinatorial action of FoxC2, Etv2, and Sox17. Although Sox17 is required for arterial identity, few direct transcriptional targets have been identified in endothelial cells. Thus, this work has important implications for our understanding of endothelial specification and arterial subspecification.

He B, Ebarasi L, Zhao Z, Guo J, Ojala JRM, Hultenby K, De Val S, Betsholtz C, Tryggvason K. 2014. Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. J Am Soc Nephrol, 25 (12), pp. 2764-2777. | Show Abstract | Read more

Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G0 transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lmx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.

Bou-Gharios G, Liu K, Li I, De Val S. 2014. THREE NEW FUNCTIONALLY CONSERVED CIS-REGULATORY ELEMENTS IN THE ACAN GENE OSTEOARTHRITIS AND CARTILAGE, 22 pp. S143-S144.

Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, Davies B, Peterse EFP, Sacilotto N, Walker GJ et al. 2013. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell, 155 (2), pp. 410-422. | Show Abstract | Read more

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.

Sacilotto N, Monteiro R, Fritzsche M, Becker PW, Sanchez-Del-Campo L, Liu K, Pinheiro P, Ratnayaka I, Davies B, Goding CR et al. 2013. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc Natl Acad Sci U S A, 110 (29), pp. 11893-11898. | Show Abstract | Read more

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.

Robinson AS, De Val S, Shen-Mei X, Black BL. 2013. Transcriptional control of an arterial-specific enhancer from the endothelin converting enzyme-1 gene ANGIOGENESIS, 16 (1), pp. 255-256.

De Val S. 2011. Key transcriptional regulators of early vascular development. Arterioscler Thromb Vasc Biol, 31 (7), pp. 1469-1475. | Show Abstract | Read more

The formation of the vasculature depends on the precise spatial and temporal control of gene expression to define endothelial cell identity and to ensure the correct distribution and structure of the forming vessel network. This review provides an overview of the establishment of the vascular system, accompanied by a detailed discussion of the transcription factors involved in regulating endothelial gene expression during vasculogenesis and early vessel formation in both fish and mammalian systems. We also review the transcriptional pathways lying both upstream and downstream of key vascular transcription factors.

Lee Y, Hami D, De Val S, Kagermeier-Schenk B, Wills AA, Black BL, Weidinger G, Poss KD. 2009. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev Biol, 331 (2), pp. 270-280. | Show Abstract | Read more

Appendage regeneration in salamanders and fish occurs through formation and maintenance of a mass of progenitor tissue called the blastema. A dedicated epidermis overlays the blastema and is required for its proliferation and patterning, yet this interaction is poorly understood. Here, we identified molecularly and functionally distinct compartments within the basal epidermal layer during zebrafish fin regeneration. Proximal epidermal subtypes express the transcription factor lef1 and the blastemal mitogen shh, while distal subtypes express the Fgf target gene pea3 and wnt5b, an inhibitor of blastemal proliferation. Ectopic overexpression of wnt5b reduced shh expression, while pharmacologic introduction of a Hh pathway agonist partially rescued blastemal proliferation during wnt5b overexpression. Loss- and gain-of-function approaches indicate that Fgf signaling promotes shh expression in proximal epidermis, while Fgf/Ras signaling restricts shh expression from distal epidermis through induction of pea3 expression and maintenance of wnt5b. Thus, the fin wound epidermis spatially confines Hh signaling through the activity of Fgf and Wnt pathways, impacting blastemal proliferation during regenerative outgrowth.

Yee SW, Shima JE, Hesselson S, Nguyen L, De Val S, Lafond RJ, Kawamoto M, Johns SJ, Stryke D, Kwok P-Y et al. 2009. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). J Pharmacol Exp Ther, 328 (3), pp. 699-707. | Show Abstract | Read more

The human concentrative nucleoside transporter 2 (CNT2) plays an important role in the absorption, disposition, and biological effects of endogenous nucleosides and nucleoside analog drugs. We identified genetic variation in the basal promoter region of CNT2 and characterized the function of the variants. We screened DNA from an ethnically diverse population and identified five basal promoter variants in CNT2. Three major haplotypes in the CNT2 basal promoter region were identified and were found at different allele frequencies in various ethnic groups. The common promoter variants and haplotypes were constructed and characterized for their promoter activity using luciferase reporter assays. One polymorphic variant, rs2413775 (-146T>A), with an allele frequency >20% in all populations, showed a gain of function in luciferase activity. Furthermore, in vivo mouse promoter assays of these nucleotide variants using the hydrodynamic tail vein injection, leading to their expression in the liver, demonstrated similar results. Transcription factor binding site (TFBS) analysis indicated this variant alters a hepatic nuclear factor (HNF) 1 TFBS. Electrophoretic mobility shift assay demonstrated stronger binding of HNF1alpha and weaker binding of HNF1beta to the -146T and -146A regions, whereas the single nucleotide polymorphism (SNP), -146A, exhibited enhanced binding to both HNF1alpha and HNF1beta, consistent with its greater activity in reporter assays. The data collectively suggest that the common variant, -146T>A, in the proximal promoter of CNT2 may result in an enhanced transcription rate of the gene and, thus, expression levels of CNT2. This SNP may play a role in variation in the pharmacokinetics and pharmacological effects of nucleoside analogs.

Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Lee H-Y, Samuel VT, Shulman GI, Kim K-H et al. 2009. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med, 15 (2), pp. 159-168. | Show Abstract | Read more

A main function of white adipose tissue is to release fatty acids from stored triacylglycerol for other tissues to use as an energy source. Whereas endocrine regulation of lipolysis has been extensively studied, autocrine and paracrine regulation is not well understood. Here we describe the role of the newly identified major adipocyte phospholipase A(2), AdPLA (encoded by Pla2g16, also called HREV107), in the regulation of lipolysis and adiposity. AdPLA-null mice have a markedly higher rate of lipolysis owing to increased cyclic AMP levels arising from the marked reduction in the amount of adipose prostaglandin E(2) that binds the Galpha(i)-coupled receptor, EP3. AdPLA-null mice have markedly reduced adipose tissue mass and triglyceride content but normal adipogenesis. They also have higher energy expenditure with increased fatty acid oxidation within adipocytes. AdPLA-deficient ob/ob mice remain hyperphagic but lean, with increased energy expenditure, yet have ectopic triglyceride storage and insulin resistance. AdPLA is a major regulator of adipocyte lipolysis and is crucial for the development of obesity.

De Val S, Black BL. 2009. Transcriptional control of endothelial cell development. Dev Cell, 16 (2), pp. 180-195. | Show Abstract | Read more

The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.

De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu S-M et al. 2008. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell, 135 (6), pp. 1053-1064. | Show Abstract | Read more

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.

Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL, Stainier DYR. 2008. Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev, 22 (6), pp. 734-739. | Show Abstract | Read more

Cardiac chamber formation represents an essential evolutionary milestone that allows for the heart to receive (atrium) and pump (ventricle) blood throughout a closed circulatory system. Here, we reveal a novel transcriptional pathway between foxn4 and tbx genes that facilitates this evolutionary event. We show that the zebrafish gene slipjig, which encodes Foxn4, regulates the formation of the atrioventricular (AV) canal to divide the heart. sli/foxn4 is expressed in the AV canal, and its encoded product binds to a highly conserved tbx2 enhancer domain that contains Foxn4- and T-box-binding sites, both necessary to regulate tbx2b expression in the AV canal.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD et al. 2006. In vivo enhancer analysis of human conserved non-coding sequences. Nature, 444 (7118), pp. 499-502. | Show Abstract | Read more

Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human-mouse-rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all approximately 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.

Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL. 2005. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol, 287 (1), pp. 134-145. | Show Abstract | Read more

The vertebrate heart arises from the fusion of bilateral regions of anterior mesoderm to form a linear heart tube. Recent studies in mouse and chick have demonstrated that a second cardiac progenitor population, known as the anterior or secondary heart field, is progressively added to the heart at the time of cardiac looping. While it is clear that this second field contributes to the myocardium, its precise boundaries, other lineages derived from this population, and its contributions to the postnatal heart remain unclear. In this study, we used regulatory elements from the mouse mef2c gene to direct the expression of Cre recombinase exclusively in the anterior heart field and its derivatives in transgenic mice. By crossing these mice, termed mef2c-AHF-Cre, to Cre-dependent lacZ reporter mice, we generated a fate map of the embryonic, fetal, and postnatal heart. These studies show that the endothelial and myocardial components of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expressing cells within the anterior heart field and its derivatives. These studies also show that the atria, epicardium, coronary vessels, and the majority of outflow tract smooth muscle are not derived from this anterior heart field population. Furthermore, a transgene marker specific for the anterior heart field is expressed in the common ventricular chamber in mef2c mutant mice, suggesting that the cardiac looping defect in these mice is not due to a failure in anterior heart field addition to the heart. Finally, the Cre transgenic mice described here will be a crucial tool for conditional gene inactivation exclusively in the anterior heart field and its derivatives.

Antoniv TT, Tanaka S, Sudan B, De Val S, Liu K, Wang L, Wells DJ, Bou-Gharios G, Ramirez F. 2005. Identification of a repressor in the first intron of the human alpha2(I) collagen gene (COL1A2). J Biol Chem, 280 (42), pp. 35417-35423. | Show Abstract | Read more

The human and mouse genes that code for the alpha2 chain of collagen I (COL1A2 and Col1a2, respectively) share a common chromatin structure and nearly identical proximal promoter and far upstream enhancer sequences. Despite these homologies, species-specific differences have been reported regarding the function of individual cis-acting elements, such as the first intron sequence. In the present study, we have investigated the transcriptional contribution of the unique open chromatin site in the first intron of COL1A2 using a transgenic mouse model. DNase I footprinting identified a cluster of three distinct areas of nuclease protection (FI1-3) that span from nucleotides +647 to +760, relative to the transcription start site, and which contain consensus sequences for GATA and interferon regulatory factor (IRF) transcription factors. Gel mobility shift and chromatin immunoprecipitation assays corroborated this last finding by documenting binding of GATA-4 and IRF-1 and IRF-2 to the first intron sequence. Moreover, a short sequence encompassing the three footprints was found to inhibit expression of transgenic constructs containing the COL1A2 proximal promoter and far upstream enhancer in a position-independent manner. Mutations inserted into each of the footprints restored transgenic expression to different extents. These results therefore indicated that the unique open chromatin site of COL1A2 corresponds to a repressor, the activity of which seems to be mediated by the concerted action of GATA and IRF proteins. More generally, the study reiterated the existence of species-specific difference in the regulatory networks of the mammalian alpha2(I) collagen coding genes.

Rojas A, De Val S, Heidt AB, Xu S-M, Bristow J, Black BL. 2005. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development, 132 (15), pp. 3405-3417. | Show Abstract | Read more

The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development. Despite the importance of GATA4 in tissue specification and differentiation, the mechanisms by which Gata4 expression is activated and the transcription factor pathways upstream of GATA4 remain largely undefined. To identify transcriptional regulators of Gata4 in the mouse, we screened conserved noncoding sequences from the mouse Gata4 gene for enhancer activity in transgenic embryos. Here, we define the regulation of a distal enhancer element from Gata4 that is sufficient to direct expression throughout the lateral mesoderm, beginning at 7.5 days of mouse embryonic development. The activity of this enhancer is initially broad but eventually becomes restricted to the mesenchyme surrounding the liver. We demonstrate that the function of this enhancer in transgenic embryos is dependent upon highly conserved Forkhead and GATA transcription factor binding sites, which are bound by FOXF1 and GATA4, respectively. Furthermore, the activity of the Gata4 lateral mesoderm enhancer is attenuated by the BMP antagonist Noggin, and the enhancer is not activated in Bmp4-null embryos. Thus, these studies establish that Gata4 is a direct transcriptional target of Forkhead and GATA transcription factors in the lateral mesoderm, and demonstrate that Gata4 lateral mesoderm enhancer activation requires BMP4, supporting a model in which GATA4 serves as a downstream effector of BMP signaling in the lateral mesoderm.

De Val S, Anderson JP, Heidt AB, Khiem D, Xu S-M, Black BL. 2004. Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. Dev Biol, 275 (2), pp. 424-434. | Show Abstract | Read more

Members of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors play key roles in the development and differentiation of numerous cell types during mammalian development, including the vascular endothelium. Mef2c is expressed very early in the development of the endothelium, and genetic studies in mice have demonstrated that mef2c is required for vascular development. However, the transcriptional pathways involving MEF2C during endothelial cell development have not been defined. As a first step towards identifying the transcriptional factors upstream of MEF2C in the vascular endothelium, we screened for transcriptional enhancers from the mouse mef2c gene that regulate vascular expression in vivo. In this study, we identified a transcriptional enhancer from the mouse mef2c gene sufficient to direct expression to the vascular endothelium in transgenic embryos. This enhancer is active in endothelial cells within the developing vascular system from very early stages in vasculogenesis, and the enhancer remains robustly active in the vascular endothelium during embryogenesis and in adulthood. This mef2c endothelial cell enhancer contains four perfect consensus Ets transcription factor binding sites that are efficiently bound by Ets-1 protein in vitro and are required for enhancer function in transgenic embryos. Thus, these studies identify mef2c as a direct transcriptional target of Ets factors via an evolutionarily conserved transcriptional enhancer and establish a direct link between these two early regulators of vascular gene expression during endothelial cell development in vivo.

Anderson JP, Dodou E, Heidt AB, De Val SJ, Jaehnig EJ, Greene SB, Olson EN, Black BL. 2004. HRC is a direct transcriptional target of MEF2 during cardiac, skeletal, and arterial smooth muscle development in vivo. Mol Cell Biol, 24 (9), pp. 3757-3768. | Show Abstract | Read more

The HRC gene encodes the histidine-rich calcium-binding protein, which is found in the lumen of the junctional sarcoplasmic reticulum (SR) of cardiac and skeletal muscle and within calciosomes of arterial smooth muscle. The expression of HRC in cardiac, skeletal, and smooth muscle raises the possibility of a common transcriptional mechanism governing its expression in all three muscle cell types. In this study, we identified a transcriptional enhancer from the HRC gene that is sufficient to direct the expression of lacZ in the expression pattern of endogenous HRC in transgenic mice. The HRC enhancer contains a small, highly conserved sequence that is required for expression in all three muscle lineages. Within this conserved region is a consensus site for myocyte enhancer factor 2 (MEF2) proteins that we show is bound efficiently by MEF2 and is required for transgene expression in all three muscle lineages in vivo. Furthermore, the entire HRC enhancer sequence lacks any discernible CArG motifs, the binding site for serum response factor (SRF), and we show that the enhancer is not activated by SRF. Thus, these studies identify the HRC enhancer as the first MEF2-dependent, CArG-independent transcriptional target in smooth muscle and represent the first analysis of the transcriptional regulation of an SR gene in vivo.

De Val S, Ponticos M, Antoniv TT, Wells DJ, Abraham D, Partridge T, Bou-Gharios G. 2002. Identification of the key regions within the mouse pro-alpha 2(I) collagen gene far-upstream enhancer. J Biol Chem, 277 (11), pp. 9286-9292. | Show Abstract | Read more

Studies using transgenic mice have shown that the mouse pro-alpha2(I) collagen gene contains a far-upstream enhancer, which directs expression in the majority of collagen I-producing cells during development and in response to tissue injury. In this study, we have investigated the minimal functional region required for the enhancer effect and studied the role of the three hypersensitive sites (HS3-HS5) that overlap this region. The results of deletion experiments indicate that the minimal functional unit of this enhancer is a 1.5-kb region between -17.0 and -15.45 kb from the transcription start site. This region includes the core sequences of HS3 and HS4 but not HS5. The HS4 sequences are essential for the functional integrity of the enhancer, whereas HS3 represents tissue-specific elements that direct expression in mesenchymal cells of internal tissues and body wall muscles. The HS3 region appears to bind a complex of transcription factors illustrated by large regions of protected sequences. A 400-bp sequence located between -17.0 and -16.6 is also essential for the enhancer because its deletion results in increased susceptibility to the chromatin environment.

Ponticos M, De Val S, Black CM, Bou-Gharios G, London DA. 2001. Separate cis-acting elements in the far upstream enhancer of the mouse pro alpha 2(I) collagen (col 1 alpha 2) gene drive tissue specific expression. ARTHRITIS AND RHEUMATISM, 44 (12), pp. 2948-2948.

Antoniv TT, De Val S, Wells D, Denton CP, Rabe C, de Crombrugghe B, Ramirez F, Bou-Gharios G. 2001. Characterization of an evolutionarily conserved far-upstream enhancer in the human alpha 2(I) collagen (COL1A2) gene. J Biol Chem, 276 (24), pp. 21754-21764. | Show Abstract | Read more

We have examined the chromatin structure around and upstream of the transcriptional start site of the human alpha2(I) collagen (COL1A2) gene. Four strong DNase I-hypersensitive sites (HS2-5) were only detected in fibroblasts, and a weaker one (HS1) was identified in type I collagen-negative cells. Another hypersensitive site potentially involved in COL1A2 silencing was found in intron 1 (HS(In)). HS1 and HS2 were mapped within conserved promoter sequences and at locations comparable to the mouse gene. HS3, HS4, and HS5 were likewise mapped approximately 20 kilobases upstream of COL1A2 at about the same position as the mouse far-upstream enhancer and within a remarkably homologous genomic segment. DNase I footprinting identified twelve areas of nuclease protection in the far-upstream region (FU1-12) and within stretches nearly identical to the mouse sequence. The region containing HS3-5 was found to confer high and tissue-specific expression in transgenic mice to the otherwise minimally active COL1A2 promoter. Characterization of the human element documented functional differences with the mouse counterpart. Enhancer activity substantially decreased without the segment containing FU1-7 and HS5, and inclusion of AluI repeats located 3' of HS3 augmented position-independent expression of the transgene. Hence, subtle differences may characterize the regulation of mammalian alpha2(I) collagen genes by evolutionarily conserved sequences.

Chiang IK-N, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D et al. 2017. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development, 144 (14), pp. 2629-2639. | Show Abstract | Read more

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.

Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. 2016. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Arterioscler Thromb Vasc Biol, 36 (6), pp. 1209-1219. | Show Abstract | Read more

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.

Robinson AS, Materna SC, Barnes RM, De Val S, Xu S-M, Black BL. 2014. An arterial-specific enhancer of the human endothelin converting enzyme 1 (ECE1) gene is synergistically activated by Sox17, FoxC2, and Etv2. Dev Biol, 395 (2), pp. 379-389. | Show Abstract | Read more

Endothelin-converting enzyme-1 (Ece-1), a crucial component of the Endothelin signaling pathway, is required for embryonic development and is an important regulator of vascular tone, yet the transcriptional regulation of the ECE1 gene has remained largely unknown. Here, we define the activity and regulation of an enhancer from the human ECE1 locus in vivo. The enhancer identified here becomes active in endothelial progenitor cells shortly after their initial specification and is dependent on a conserved FOX:ETS motif, a composite binding site for Forkhead transcription factors and the Ets transcription factor Etv2, for activity in vivo. The ECE1 FOX:ETS motif is bound and cooperatively activated by FoxC2 and Etv2, but unlike other described FOX:ETS-dependent enhancers, ECE1 enhancer activity becomes restricted to arterial endothelium and endocardium by embryonic day 9.5 in transgenic mouse embryos. The ECE1 endothelial enhancer also contains an evolutionarily-conserved, consensus SOX binding site, which is required for activity in transgenic mouse embryos. Importantly, the ECE1 SOX site is bound and activated by Sox17, a transcription factor involved in endothelial cell differentiation and an important regulator of arterial identity. Moreover, the ECE1 enhancer is cooperatively activated by the combinatorial action of FoxC2, Etv2, and Sox17. Although Sox17 is required for arterial identity, few direct transcriptional targets have been identified in endothelial cells. Thus, this work has important implications for our understanding of endothelial specification and arterial subspecification.

Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, Davies B, Peterse EFP, Sacilotto N, Walker GJ et al. 2013. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell, 155 (2), pp. 410-422. | Show Abstract | Read more

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.

Sacilotto N, Monteiro R, Fritzsche M, Becker PW, Sanchez-Del-Campo L, Liu K, Pinheiro P, Ratnayaka I, Davies B, Goding CR et al. 2013. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc Natl Acad Sci U S A, 110 (29), pp. 11893-11898. | Show Abstract | Read more

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.

De Val S. 2011. Key transcriptional regulators of early vascular development. Arterioscler Thromb Vasc Biol, 31 (7), pp. 1469-1475. | Show Abstract | Read more

The formation of the vasculature depends on the precise spatial and temporal control of gene expression to define endothelial cell identity and to ensure the correct distribution and structure of the forming vessel network. This review provides an overview of the establishment of the vascular system, accompanied by a detailed discussion of the transcription factors involved in regulating endothelial gene expression during vasculogenesis and early vessel formation in both fish and mammalian systems. We also review the transcriptional pathways lying both upstream and downstream of key vascular transcription factors.

Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Lee H-Y, Samuel VT, Shulman GI, Kim K-H et al. 2009. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med, 15 (2), pp. 159-168. | Show Abstract | Read more

A main function of white adipose tissue is to release fatty acids from stored triacylglycerol for other tissues to use as an energy source. Whereas endocrine regulation of lipolysis has been extensively studied, autocrine and paracrine regulation is not well understood. Here we describe the role of the newly identified major adipocyte phospholipase A(2), AdPLA (encoded by Pla2g16, also called HREV107), in the regulation of lipolysis and adiposity. AdPLA-null mice have a markedly higher rate of lipolysis owing to increased cyclic AMP levels arising from the marked reduction in the amount of adipose prostaglandin E(2) that binds the Galpha(i)-coupled receptor, EP3. AdPLA-null mice have markedly reduced adipose tissue mass and triglyceride content but normal adipogenesis. They also have higher energy expenditure with increased fatty acid oxidation within adipocytes. AdPLA-deficient ob/ob mice remain hyperphagic but lean, with increased energy expenditure, yet have ectopic triglyceride storage and insulin resistance. AdPLA is a major regulator of adipocyte lipolysis and is crucial for the development of obesity.

De Val S, Black BL. 2009. Transcriptional control of endothelial cell development. Dev Cell, 16 (2), pp. 180-195. | Show Abstract | Read more

The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.

De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu S-M et al. 2008. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell, 135 (6), pp. 1053-1064. | Show Abstract | Read more

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.

Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL, Stainier DYR. 2008. Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev, 22 (6), pp. 734-739. | Show Abstract | Read more

Cardiac chamber formation represents an essential evolutionary milestone that allows for the heart to receive (atrium) and pump (ventricle) blood throughout a closed circulatory system. Here, we reveal a novel transcriptional pathway between foxn4 and tbx genes that facilitates this evolutionary event. We show that the zebrafish gene slipjig, which encodes Foxn4, regulates the formation of the atrioventricular (AV) canal to divide the heart. sli/foxn4 is expressed in the AV canal, and its encoded product binds to a highly conserved tbx2 enhancer domain that contains Foxn4- and T-box-binding sites, both necessary to regulate tbx2b expression in the AV canal.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD et al. 2006. In vivo enhancer analysis of human conserved non-coding sequences. Nature, 444 (7118), pp. 499-502. | Show Abstract | Read more

Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human-mouse-rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all approximately 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.

De Val S, Anderson JP, Heidt AB, Khiem D, Xu S-M, Black BL. 2004. Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. Dev Biol, 275 (2), pp. 424-434. | Show Abstract | Read more

Members of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors play key roles in the development and differentiation of numerous cell types during mammalian development, including the vascular endothelium. Mef2c is expressed very early in the development of the endothelium, and genetic studies in mice have demonstrated that mef2c is required for vascular development. However, the transcriptional pathways involving MEF2C during endothelial cell development have not been defined. As a first step towards identifying the transcriptional factors upstream of MEF2C in the vascular endothelium, we screened for transcriptional enhancers from the mouse mef2c gene that regulate vascular expression in vivo. In this study, we identified a transcriptional enhancer from the mouse mef2c gene sufficient to direct expression to the vascular endothelium in transgenic embryos. This enhancer is active in endothelial cells within the developing vascular system from very early stages in vasculogenesis, and the enhancer remains robustly active in the vascular endothelium during embryogenesis and in adulthood. This mef2c endothelial cell enhancer contains four perfect consensus Ets transcription factor binding sites that are efficiently bound by Ets-1 protein in vitro and are required for enhancer function in transgenic embryos. Thus, these studies identify mef2c as a direct transcriptional target of Ets factors via an evolutionarily conserved transcriptional enhancer and establish a direct link between these two early regulators of vascular gene expression during endothelial cell development in vivo.

201

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk