Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Malaria remains the single largest threat to child survival in sub-Saharan Africa and warrants long-term investment for control. Previous malaria distribution maps have been vague and arbitrary. Marlies Craig, Bob Snow and David le Sueur here describe a simple numerical approach to defining distribution of malaria transmission, based upon biological constraints of climate on parasite and vector development. The model compared well with contemporary field data and historical 'expert opinion' maps, excepting small-scale ecological anomalies. The model provides a numerical basis for further refinement and prediction of the impact of climate change on transmission. Together with population, morbidity and mortality data, the model provides a fundamental tool for strategic control of malaria.

Type

Journal article

Journal

Parasitol Today

Publication Date

03/1999

Volume

15

Pages

105 - 111

Keywords

Africa South of the Sahara, Animals, Anopheles, Climate, Fuzzy Logic, Humans, Insect Vectors, Malaria, Falciparum, Models, Biological, Plasmodium falciparum