Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mucosal-associated invariant T (MAIT) cells are MR1-restricted innate-like T cells conserved across mammalian species, including mice and humans. By sequencing RNA from sorted MR1-5-OP-RU tetramer+ cells derived from either human blood or murine lungs, we define the basic transcriptome of an activated MAIT cell in both species and demonstrate how this profile changes during the resolution of infection and during reinfection. We observe strong similarities between MAIT cells in humans and mice. In both species, activation leads to strong expression of pro-inflammatory cytokines and chemokines as well as a strong tissue repair signature, recently described in murine commensal-specific H2-M3-restricted T cells. Transcriptomes of MAIT cells and H2-M3-specific CD8+ T cells displayed the most similarities to invariant natural killer T (iNKT) cells when activated, but to γδ T cells after the resolution of infection. These data define the requirements for and consequences of MAIT cell activation, revealing a tissue repair phenotype expressed upon MAIT cell activation in both species.

Original publication

DOI

10.1016/j.celrep.2019.07.039

Type

Journal article

Journal

Cell reports

Publication Date

09/2019

Volume

28

Pages

3249 - 3262.e5

Addresses

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK. Electronic address: timothy.hinks@ndm.ox.ac.uk.

Keywords

CD8-Positive T-Lymphocytes, Animals, Humans, Mice, Lymphocyte Activation, Natural Killer T-Cells, Transcriptome, Mucosal-Associated Invariant T Cells