Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hospital performance is often measured using self-reported statistics, such as the incidence of hospital-transmitted micro-organisms or those exhibiting antimicrobial resistance (AMR), encouraging hospitals with high levels to improve their performance. However, hospitals that increase screening efforts will appear to have a higher incidence and perform poorly, undermining comparison between hospitals and disincentivising testing, thus hampering infection control. We propose a surveillance system in which hospitals test patients previously discharged from other hospitals and report observed cases. Using English National Health Service (NHS) Hospital Episode Statistics data, we analysed patient movements across England and assessed the number of hospitals required to participate in such a reporting scheme to deliver robust estimates of incidence. With over 1.2 million admissions to English hospitals previously discharged from other hospitals annually, even when only a fraction of hospitals (41/155) participate (each screening at least 1000 of these admissions), the proposed surveillance system can estimate incidence across all hospitals. By reporting on other hospitals, the reporting of incidence is separated from the task of improving own performance. Therefore the incentives for increasing performance can be aligned to increase (rather than decrease) screening efforts, thus delivering both more comparable figures on the AMR problems across hospitals and improving infection control efforts.

Original publication




Journal article


PloS one

Publication Date





The National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, United Kingdom.


Humans, Cross Infection, Hospitalization, Data Collection, Population Surveillance, Incidence, Drug Resistance, Bacterial, Computer Communication Networks, England, Female, Epidemiological Monitoring