Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic factors are likely to contribute to low severe malaria case fatality rates in Melanesian populations, but association studies can be underpowered and may not provide plausible mechanistic explanations if significant associations are detected. In preparation for a genome-wide association study, 29 candidate single-nucleotide polymorphisms (SNPs) with minor allele frequencies >5% were examined in a case-control study of 504 Papua New Guinean children with severe malaria. In parallel, an immunological substudy was performed on convalescent peripheral blood mononuclear cells (PBMCs) from cases and controls. Following stimulation with a Toll-like receptor (TLR) 1/2 agonist, effector cytokines and chemokines were assayed. The only significant genetic association observed involved a nonsynonymous SNP (TLR1rs4833095) in the TLR1 gene. A recessive (TT) genotype was associated with reduced odds of severe malaria of 0.52 (95% confidence interval (0.29-0.90), P=0.006). Concentrations of pro-inflammatory cytokines interleukin-1β and tumour necrosis factor α were significantly higher in severe malaria cases compared with healthy controls, but lower in children with the protective recessive (TT) genotype. A genetic variant in TLR1 may contribute to the low severe malaria case fatality rates in this region through a reduced pro-inflammatory cellular phenotype.

Original publication

DOI

10.1038/gene.2015.50

Type

Journal article

Journal

Genes and immunity

Publication Date

01/2016

Volume

17

Pages

52 - 59

Addresses

School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute, Fiona Stanley Hospital, Bull Creek, Western Australia, Australia.

Keywords

Leukocytes, Mononuclear, Humans, Malaria, Falciparum, Case-Control Studies, Polymorphism, Single Nucleotide, Child, Preschool, Papua New Guinea, Female, Male, Toll-Like Receptor 1, Genome-Wide Association Study