Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Owing to the finding that Dengvaxia ® (the only licensed dengue vaccine to date) increases the risk of severe illness among seronegative recipients, the World Health Organization has recommended screening individuals for their serostatus prior to vaccination. To decide whether and how to carry out screening, it is necessary to estimate the transmission intensity of dengue and to understand the performance of the screening method. In this study, we inferred the annual force of infection (FOI; a measurement of transmission intensity) of dengue virus in three locations in Vietnam: An Giang (FOI = 0.04 for the below 10 years age group and FOI = 0.20 for the above 10 years age group), Ho Chi Minh City (FOI = 0.12) and Quang Ngai (FOI = 0.05). In addition, we show that using a quantitative approach to immunoglobulin G (IgG) levels (measured by indirect enzyme-linked immunosorbent assays) can help to distinguish individuals with primary exposures (primary seropositive) from those with secondary exposures (secondary seropositive). We found that primary-seropositive individuals—the main targets of the vaccine—tend to have a lower IgG level, and, thus, they have a higher chance of being misclassified as seronegative than secondary-seropositive cases. However, screening performance can be improved by incorporating patient age and transmission intensity into the interpretation of IgG levels.

Original publication

DOI

10.1098/rsif.2019.0207

Type

Journal article

Journal

Journal of The Royal Society Interface

Publisher

The Royal Society

Publication Date

07/2019

Volume

16

Pages

20190207 - 20190207