Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This paper presents a Bayesian nonlinear approach for the analysis of spatial count data. It extends the Bayesian partition methodology of Holmes, Denison, and Mallick (1999, Bayesian partitioning for classification and regression, Technical Report, Imperial College, London) to handle data that involve counts. A demonstration involving incidence rates of leukemia in New York state is used to highlight the methodology. The model allows us to make probability statements on the incidence rates around point sources without making any parametric assumptions about the nature of the influence between the sources and the surrounding location.


Journal article



Publication Date





143 - 149


Bayes Theorem, Biometry, Cluster Analysis, Data Interpretation, Statistical, Disease, Hazardous Waste, Humans, Leukemia, Markov Chains, Monte Carlo Method, New York, Nonlinear Dynamics, Probability, Risk