Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACTMetagenomic sequencing of faecal DNA can usefully characterise an individual’s intestinal resistome but is limited by its inability to detect important pathogens that may be present at low abundance, such as carbapenemase or extended-spectrum beta-lactamase producingEnterobacteriaceae. Here we aimed to develop a hybrid protocol to improve detection of resistance genes inEnterobacteriaceaeby using a short period of culture enrichment prior to sequencing of DNA extracted directly from the enriched sample. Volunteer faeces were spiked with carbapenemase-producingEnterobacteriaceaeand incubated in selective broth culture for 6 hours before sequencing. Different DNA extraction methods were compared, including a plasmid extraction protocol to increase the detection of plasmid-associated resistance genes. Although enrichment prior to sequencing increased the detection of carbapenemase genes, the differing growth characteristics of the spike organisms precluded accurate quantification of their concentration prior to culture. Plasmid extraction protocols increased detection of resistance genes present on plasmids, but the effects were heterogeneous and dependent on plasmid size. Our results demonstrate methods of improving the limit of detection of selected resistance mechanisms in a faecal resistome assay, but they also highlight the difficulties in using these techniques for accurate quantification and should inform future efforts to achieve this goal.

Original publication

DOI

10.1101/560292

Type

Journal article

Publication Date

26/02/2019