Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One of the fundamental assumptions of fragment-based drug discovery is that the fragment’s binding mode will be conserved upon elaboration into larger compounds. The most common way of quantifying binding mode similarity is Root Mean Square Deviation (RMSD), but Protein Ligand Interaction Fingerprint (PLIF) similarity and shape-based metrics are sometimes used. We introduce SuCOS, an open-source shape and chemical feature overlap metric. We explore the strengths and weaknesses of RMSD, PLIF similarity, and SuCOS on a dataset of X-ray crystal structures of paired elaborated larger and smaller molecules bound to the same protein. Our redocking and cross-docking studies show that SuCOS is superior to RMSD and PLIF similarity. When redocking, SuCOS produces fewer false positives and false negatives than RMSD and PLIF similarity; and in cross-docking, SuCOS is better at differentiating experimentally-observed binding modes of an elaborated molecule given the pose of its non-elaborated counterpart. Finally we show that SuCOS performs better than AutoDock Vina at differentiating actives from decoy ligands using the DUD-E dataset. SuCOS is available at .

Original publication




Journal article

Publication Date