Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over two decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers, nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine resistant transporter (crt)-76, multi-drug resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the re-introduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a re-emergence of CQ resistant parasites circulating below detectable levels or being reintroduced from other regions remains.

Original publication

DOI

10.1128/aac.01067-19

Type

Journal article

Journal

Antimicrobial agents and chemotherapy

Publication Date

09/2019

Volume

63

Pages

AAC.01067 - AAC.01019

Addresses

KEMRI-Wellcome Trust Research Programme, CGMRC, Kenya.