Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACT By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation. Specifically, high-throughput phenotyping of 530 knockout mouse lines identified 140 monogenic “hits” (>25%), most of which had never hitherto been implicated in immunology. Furthermore, they were conspicuously enriched in genes for which humans show poor tolerance to loss-of-function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with one another and with specific physiologic traits. By limiting the freedom of individual immune parameters, such linkages impose genetically regulated “immunological structures”, whose integrity was found to be associated with immunocompetence. Hence, our findings provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.

Original publication

DOI

10.1101/688010

Type

Journal article

Publication Date

02/07/2019