Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-ɣ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-ɣ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.

Original publication

DOI

10.1016/j.vaccine.2019.11.005

Type

Journal article

Journal

Vaccine

Publication Date

01/2020

Volume

38

Pages

1241 - 1248

Addresses

Jenner Institute Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK; TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK.

Keywords

Lymph Nodes, Animals, Cattle, Mycobacterium bovis, Tuberculosis, Bovine, BCG Vaccine, Immunization, Secondary, Vaccination, Interferon-gamma, Bacterial Load