Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>Abstract</jats:title><jats:p>Understanding the role that antibodies play in controlling HIV-1 infection and in the dynamics that underpin the formation of the HIV-1 reservoir are important steps towards combatting this global disease. To address these gaps, we performed whole-genome, deep sequence analysis of longitudinal plasma HIV-1 samples from an individual who failed to develop detectable anti-HIV-1 antibodies for 4 years post infection. These analyses reveal limited evolution despite months of measurable viremia during treatment with cART. We used a mathematical model to simultaneously analyse the viral and evolutionary dynamics of this unique individual. We propose a role for antibodies in reducing viral infectivity and demonstrate how our data are consistent with a theory of rapid activation of latently infected cells prior to effective viral suppression. Our study supports and elucidates a recent finding that although the latent reservoir persists for years once virus is effectively suppressed, prior to suppression, viral strains within the reservoir turn over rapidly. The implications for a cure are significant.</jats:p>

Original publication




Journal article


Cold Spring Harbor Laboratory

Publication Date