Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract disease in children worldwide and is a significant cause of hospital admissions in young children in England. No RSV vaccine has been licensed but a number are under development. In this work, we present two structurally distinct mathematical models, parameterized using RSV data from the UK, which have been used to explore the effect of introducing an RSV paediatric vaccine to the National programme. We have explored different vaccine properties, and dosing regimens combined with a range of implementation strategies for RSV control. The results suggest that vaccine properties that confer indirect protection have the greatest effect in reducing the burden of disease in children under 5 years. The findings are reinforced by the concurrence of predictions from the two models with very different epidemiological structure. The approach described has general application in evaluating vaccine target product profiles.

Original publication




Journal article


Vaccine: X

Publication Date





Department of Mathematics, University of Manchester, Oxford Road, Manchester, UK.