Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previous studies have documented the ability of 8-bromoguanosine (8-BrGuo) and 8-mercaptoguanosine (8-MGuo) to induce polyclonal proliferation and differentiation of B cells from a variety of mouse strains. In the present study, we have defined the cellular target of this mitogenic activity. Using B cells fractionated according to size, we have found that large B cells are responsive to 8-BrGuo- and 8-MGuo-induced proliferation and differentiation whereas small, resting B cells are relatively unresponsive to these compounds. Addition of splenic adherent cells to the small B-cell fraction partially restored the proliferative but not the differentiative responses to 8-BrGuo and 8-MGuo. Although small B cells alone did not proliferate or differentiate in response to 8-BrGuo and 8-MGuo, cell surface expression of Ia antigens increased following incubation with these compounds. Thus, the biological activity of 8-BrGuo and 8-MGuo appears to be dictated by the cell type upon which it is acting. Small B cells are activated as evidenced by increased levels of surface Ia whereas large B cells are not only activated but are also induced to proliferate and differentiate.

Original publication

DOI

10.1016/0008-8749(87)90175-4

Type

Journal article

Journal

Cellular immunology

Publication Date

05/1987

Volume

106

Pages

318 - 329

Keywords

Spleen, B-Lymphocytes, Macrophages, Animals, Mice, Muramidase, Receptors, Antigen, B-Cell, Guanosine, Thionucleosides, Antibodies, Anti-Idiotypic, Antigens, Surface, Histocompatibility Antigens Class II, Lymphocyte Activation, Cell Division, Cell Differentiation, Antibody Formation