Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Identification of candidate genes and their immunological mechanisms that control autoaggressive T cells in inflamed environments, may lead to novel therapies for autoimmune diseases, like type 1 diabetes (T1D). In this study, we used transgenic NOD mice that constitutively express TNF-alpha in their islets from neonatal life (TNF-alpha-NOD) to identify protective alleles that control T1D in the presence of a proinflammatory environment. We show that TNF-alpha-mediated breakdown in T cell tolerance requires recessive NOD alleles. To identify some of these recessive alleles, we crossed TNF-alpha-NOD mice to diabetes-resistant congenic NOD mice having protective alleles at insulin-dependent diabetes (Idd) loci that control spontaneous T1D at either the preinsulitis (Idd3.Idd5) or postinsulitis (Idd9) phases. No protection from TNF-alpha-accelerated T1D was afforded by resistance alleles at Idd3.Idd5. Lack of protection was not at the level of T cell priming, the efficacy of islet-infiltrating APCs to present islet peptides, nor the ability of high levels of CD4+ Foxp3+ T cells to accumulate in the islets. In contrast, protective alleles at Idd9 significantly increased the age at which TNF-alpha-NOD mice developed T1D. Disease delay was associated with a decreased ability of CD8+ T cells to respond to islet Ags presented by islet-infiltrating APCs. Finally, we demonstrate that the protective region on chromosome 4 that controls T1D in TNF-alpha-Idd9 mice is restricted to the Idd9.1 region. These data provide new evidence of the mechanisms by which selective genetic loci control autoimmune diseases in the presence of a strong inflammatory assault.

Original publication




Journal article


Journal of immunology (Baltimore, Md. : 1950)

Publication Date





5105 - 5114


Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.


CD8-Positive T-Lymphocytes, T-Lymphocytes, Cytotoxic, Chromosomes, Animals, Mice, Inbred NOD, Mice, Transgenic, Mice, Diabetes Mellitus, Type 1, Tumor Necrosis Factor-alpha, Immune Tolerance, Antigen Presentation, Alleles, Insulin-Secreting Cells, Immunity, Innate