Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>The immunophilin FKBP12 is a known inhibitor of type I BMP and TGF-β receptors that competes for binding with their substrate SMADs. FKBP12 and the close paralog FKBP12.6 additionally assemble with ryanodine receptors to control Ca2+ release. Binding of FKBP12.6 to BMP/TGF-β receptors has yet to be investigated, but appears plausible given its high sequence similarity to FKBP12. Here, we found that FKBP12.6 can assemble with BMP and TGF-β-family type I receptors, but not with type II receptors. Cellular immunoprecipitation confirmed similar binding of FKBP12 and FKBP12.6 to the BMP receptor ALK2 (ACVR1), a known target of mutations in the congenital syndrome fibrodysplasia ossificans progressiva (FOP), as well as the pediatric brain tumor diffuse intrinsic pontine glioma (DIPG). SEC-MALS analyses using purified proteins indicated a direct 1:1 interaction between FKBP12.6 and the receptor’s cytoplasmic domains. The 2.17 Å structure of this ALK2-FKBP12.6 complex bound to the inhibitor dorsomorphin showed FKBP12.6 binding to the GS domain of ALK2 in a manner equivalent to the FKBP12 complex, with ALK2 residues Phe198 and Leu199 extending into the FK506-binding pocket of FKBP12.6. These findings suggest a level of redundancy in FKBP-family regulation of BMP and TGF-β signaling.</jats:p>

Original publication

DOI

10.3390/biomedicines9020129

Type

Journal article

Journal

Biomedicines

Publisher

MDPI AG

Publication Date

29/01/2021

Volume

9

Pages

129 - 129