Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Shigella is a leading cause of moderate-to-severe diarrhea globally and the causative agent of shigellosis and bacillary dysentery. Associated with 80 to 165 million cases of diarrhea and >13% of diarrheal deaths, in many regions, Shigella exposure is ubiquitous while infection is heterogenous. To characterize host-genetic susceptibility to Shigella-associated diarrhea, we performed two independent genome-wide association studies (GWAS) including Bangladeshi infants from the PROVIDE and CBC birth cohorts in Dhaka, Bangladesh. Cases were infants with Shigella-associated diarrhea (n = 143) and controls were infants with no Shigella-associated diarrhea in the first 13 months of life (n = 446). Shigella-associated diarrhea was identified via quantitative PCR (qPCR) threshold cycle (CT ) distributions for the ipaH gene, carried by all four Shigella species and enteroinvasive Escherichia coli Host GWAS were performed under an additive genetic model. A joint analysis identified protective loci on chromosomes 11 (rs582240, within the KRT18P59 pseudogene; P = 6.40 × 10-8; odds ratio [OR], 0.43) and 8 (rs12550437, within the lincRNA RP11-115J16.1; P = 1.49 × 10-7; OR, 0.48). Conditional analyses identified two previously suggestive loci, a protective locus on chromosome 7 (rs10266841, within the 3' untranslated region [UTR] of CYTH3; Pconditional = 1.48 × 10-7; OR, 0.44) and a risk-associated locus on chromosome 10 (rs2801847, an intronic variant within MPP7; Pconditional = 8.37 × 10-8; OR, 5.51). These loci have all been indirectly linked to bacterial type 3 secretion system (T3SS) activity, its components, and bacterial effectors delivered into host cells. Host genetic factors that may affect bacterial T3SS activity and are associated with the host response to Shigella-associated diarrhea may provide insight into vaccine and drug development efforts for Shigella-associated diarrheal disease.

Original publication

DOI

10.1128/iai.00012-21

Type

Journal

Infection and immunity

Publication Date

05/2021

Volume

89

Pages

e00012 - e00021

Addresses

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Keywords

Humans, Shigella, Genetic Predisposition to Disease, Diarrhea, Odds Ratio, Chromosome Mapping, Alleles, Infant, Bangladesh, Host-Pathogen Interactions, Genome-Wide Association Study, Public Health Surveillance, Type III Secretion Systems