Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The use of higher-order-mode (HOM) pickup probes in the presence of significant fundamental RF fields can present a thermal challenge for CW or high average power SRF cavity applications. The electric field probes on the HOM-damping couplers on the JLab "High Gradient" (HG) and "Low Loss" (LL) seven-cell cavities for the CEBAF upgrade are exposed to approximately 10% of the peak magnetic field in the cavity. To avoid significant dissipative losses, these probes must remain superconducting during operation. Typical cryogenic rf feedthroughs provide a poor thermal conduction path for the probes and provide inadequate stabilization. We have developed solutions that meet the requirements, providing a direct thermal path from the niobium probe, thorough single-crystal sapphire, to bulk copper which can be thermally anchored. Designs, electromagnetic and thermal analyses, and performance data will be presented. ©2005 IEEE.

Original publication

DOI

10.1109/PAC.2005.1591733

Type

Conference paper

Publication Date

01/12/2005

Volume

2005

Pages

4108 - 4110