Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AimsWe investigated the antibacterial effect of seven essential oils (EOs) and one EO-containing liquid phytogenic solution marketed for poultry and pigs ('Product A') on chicken pathogens, as well as the relationship between minimum inhibitory concentration (MIC) in EOs and antibiotics commonly administered to chicken flocks in the Mekong Delta (Vietnam).Methods and resultsMicellar extracts from oregano (Origanum vulgare), cajeput (Melaleuca leucadendra), garlic (Allium sativum), black pepper (Piper nigrum), peppermint (Mentha × piperita L.), tea tree (Melaleuca alternifolia), cinnamon (Cinnamomum zeylanicum) EOs and Product A were investigated for their MIC against Avibacterium endocarditidis (N = 10), Pasteurella multocida (N = 7), Ornitobacterium rhinotracheale (ORT) (N = 10), Escherichia coli (N = 10) and Gallibacterium anatis (N = 10). Cinnamon EO had the lowest median MIC across strains (median 0.5 mg/ml [IQR, interquartile range 0.3-2.0 mg/ml]), followed by Product A (3.8 mg/ml [1.9-3.8 mg/ml]), oregano EO (30.4 mg/ml [7.6-60.8 mg/ml]) and garlic 63.1 mg/ml [3.9 to >505.0 mg/ml]. Peppermint, tea tree, cajeput and pepper EOs had all MIC ≥219 mg/ml. In addition, we determined the MIC of the 12 most commonly used antibiotics in chicken flocks in the area. After accounting for pathogen species, we found an independent, statistically significant (p ConclusionsIncreases in MIC of antibiotics generally correlates with increased tolerance to EOs. For cinnamon EO, however, the opposite was observed.Significance and impact of the studyOur results suggest increased antibacterial effects of EOs on multi-drug resistant pathogens; cinnamon EO was particularly effective against bacterial poultry pathogens.

Original publication

DOI

10.1111/jam.15302

Type

Journal article

Journal

Journal of applied microbiology

Publication Date

02/2022

Volume

132

Pages

1025 - 1035

Addresses

Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.

Keywords

Animals, Chickens, Swine, Bacteria, Oils, Volatile, Anti-Bacterial Agents, Microbial Sensitivity Tests, Drug Resistance, Microbial