Histological and Somatic Mutational Profiles of Mismatch Repair Deficient Endometrial Tumours of Different Aetiologies.
Ryan NAJ., Walker TDJ., Bolton J., Ter Haar N., Van Wezel T., Glaire MA., Church DN., Evans DG., Bosse T., Crosbie EJ.
BackgroundMismatch repair deficient (MMRd) tumours may arise from somatic events acquired during carcinogenesis or in the context of Lynch syndrome (LS), an inherited cancer predisposition condition caused by germline MMR pathogenic variants. Our aim was to explore whether sporadic and hereditary MMRd endometrial cancers (EC) display distinctive tumour biology.MethodsClinically annotated LS-EC were collected. Histological slide review was performed centrally by two specialist gynaecological pathologists. Mutational analysis was by a bespoke 75- gene next-generation sequencing panel. Comparisons were made with sporadic MMRd EC. Multiple correspondence analysis was used to explore similarities and differences between the cohorts.ResultsAfter exclusions, 135 LS-EC underwent independent histological review, and 64 underwent mutational analysis. Comparisons were made with 59 sporadic MMRd EC. Most tumours were of endometrioid histological subtype (92% LS-EC and 100% sporadic MMRd EC, respectively, p = NS). Sporadic MMRd tumours had significantly fewer tumour infiltrating lymphocytes (p ≤ 0.0001) and showed more squamous/mucinous differentiation than LS-EC (p = 0.04/p = 0.05). PTEN mutations were found in 88% sporadic MMRd and 61% LS-EC, respectively (p < 0.001). Sporadic MMRd tumours had significantly more mutations in PDGFRA, ALK, IDH1, CARD11, CIC, MED12, CCND1, PTPN11, RB1 and KRAS, while LS-EC showed more mutations affecting SMAD4 and ARAF. LS-EC showed a propensity for TGF-β signalling disruption. Cluster analysis found that wild type PTEN associates predominantly with LS-EC, whilst co-occurring mutations in PTEN, PIK3CA and KRAS predict sporadic MMRd EC.ConclusionsWhilst MMRd EC of hereditary and sporadic aetiology may be difficult to distinguish by histology alone, differences in infiltrating immune cell counts and mutational profile may predict heterogenous responses to novel targeted therapies and warrant further study.