Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectivesNEAT001/ANRS143 demonstrated non-inferiority of once-daily darunavir/ritonavir (800/100 mg) + twice-daily raltegravir (400 mg) versus darunavir/ritonavir + tenofovir disoproxil fumarate/emtricitabine (245/200 mg once daily) in treatment-naive patients. We investigated the population pharmacokinetics of darunavir, ritonavir, tenofovir and emtricitabine and relationships with demographics, genetic polymorphisms and virological failure.MethodsNon-linear mixed-effects models (NONMEM v. 7.3) were applied to determine pharmacokinetic parameters and assess demographic covariates and relationships with SNPs (SLCO3A1, SLCO1B1, NR1I2, NR1I3, CYP3A5*3, CYP3A4*22, ABCC2, ABCC10, ABCG2 and SCL47A1). The relationship between model-predicted darunavir AUC0-24 and C24 with time to virological failure was evaluated by Cox regression.ResultsOf 805 enrolled, 716, 720, 347 and 361 were included in the darunavir, ritonavir, tenofovir and emtricitabine models, respectively (11% female, 83% Caucasian). No significant effect of patient demographics or SNPs was observed for darunavir or tenofovir apparent oral clearance (CL/F); coadministration of raltegravir did not influence darunavir or ritonavir CL/F. Ritonavir CL/F decreased by 23% in NR1I2 63396C>T carriers and emtricitabine CL/F was linearly associated with creatinine clearance (P<0.001). No significant relationship was demonstrated between darunavir AUC0-24 or C24 and time to virological failure [HR (95% CI): 2.28 (0.53-9.80), P=0.269; and 1.82 (0.61-5.41), P=0.279, respectively].ConclusionsDarunavir concentrations were unaltered in the presence of raltegravir and not associated with virological failure. Polymorphisms investigated had little impact on study-drug pharmacokinetics. Darunavir/ritonavir + raltegravir may be an appropriate option for patients experiencing NRTI-associated toxicity.

Original publication




Journal article


The Journal of antimicrobial chemotherapy

Publication Date





628 - 639


Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK.


NEAT001/ANRS143 Study Group, Humans, HIV Infections, Ritonavir, Anti-HIV Agents, Viral Load, Pharmacogenetics, Adult, Female, Male, Tenofovir, Emtricitabine, Darunavir, Raltegravir Potassium, Liver-Specific Organic Anion Transporter 1, Multidrug Resistance-Associated Protein 2, Constitutive Androstane Receptor