Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Accurate classification of variants in cancer susceptibility genes (CSGs) is key for correct estimation of cancer risk and management of patients. Consistency in the weighting assigned to individual elements of evidence has been much improved by the American College of Medical Genetics (ACMG) 2015 framework for variant classification, UK Association for Clinical Genomic Science (UK-ACGS) Best Practice Guidelines and subsequent Cancer Variant Interpretation Group UK (CanVIG-UK) consensus specification for CSGs. However, considerable inconsistency persists regarding practice in the combination of evidence elements. CanVIG-UK is a national subspecialist multidisciplinary network for cancer susceptibility genomic variant interpretation, comprising clinical scientist and clinical geneticist representation from each of the 25 diagnostic laboratories/clinical genetic units across the UK and Republic of Ireland. Here, we summarise the aggregated evidence elements and combinations possible within different variant classification schemata currently employed for CSGs (ACMG, UK-ACGS, CanVIG-UK and ClinGen gene-specific guidance for PTEN, TP53 and CDH1). We present consensus recommendations from CanVIG-UK regarding (1) consistent scoring for combinations of evidence elements using a validated numerical 'exponent score' (2) new combinations of evidence elements constituting likely pathogenic' and 'pathogenic' classification categories, (3) which evidence elements can and cannot be used in combination for specific variant types and (4) classification of variants for which there are evidence elements for both pathogenicity and benignity.

Original publication

DOI

10.1136/jmedgenet-2020-107248

Type

Journal article

Journal

Journal of medical genetics

Publication Date

05/2021

Volume

58

Pages

297 - 304

Addresses

Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK.

Keywords

CanVIG-UK, Humans, Neoplasms, Genetic Predisposition to Disease, Evidence-Based Medicine, Genes, Neoplasm, Genetic Variation