Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectiveGlucose-6-phosphate dehydrogenase (G6PD) deficiency offers some protection against malaria; however, the degree of protection is poorly described and likely to vary with G6PD genotype and Plasmodium species. We present a novel approach to quantify the differential invasion rates of P. falciparum between G6PD deficient and normal red blood cells (RBCs) in an ex vivo model. A flow-cytometry based assay was developed to distinguish G6PD deficient and normal, parasitized and non-parasitized RBCs within the same sample. Venous blood collected from a G6PD heterozygous female was infected and cultured ex vivo with a laboratory strain of P. falciparum (FC27).ResultsAliquots of infected blood were assayed at schizont and subsequent synchronized ring stages. At schizont stage, 84.9% of RBCs were G6PD deficient of which 0.4% were parasitized compared to 2.0% of normal RBCs. In the subsequent ring stage, 90.4% of RBCs were deficient and 0.2% of deficient and 0.9% of normal cells respectively were parasitized. The pooled Odds Ratio for a deficient RBC to be parasitized was 0.2 (95% confidence interval: 0.18-0.22, p 

Original publication




Journal article


BMC research notes

Publication Date





Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.