T-cell mediated targeted delivery of anti-PD-L1 nanobody overcomes poor antibody penetration and improves PD-L1 blocking at the tumor site
Petit P-F., Bombart R., Desimpel P-H., Naulaerts S., Thouvenel L., Collet J-F., Van den Eynde BJ., Zhu J.
Abstract Monoclonal antibodies blocking immune checkpoints such as PD-L1 have yielded strong clinical benefits in many cancer types. Still, the current limitations are the lack of clinical response in a majority of patients and the development of immune-related adverse events in some. As an alternative to PD-L1-specific antibody injection, we have developed an approach based on the engineering of tumor-targeting T cells to deliver intratumorally an anti-PD-L1 nanobody. In the MC38-OVA model, our strategy enhanced tumor control as compared to injection of PD-L1-specific antibody combined with adoptive transfer of tumor-targeting T cells. As a possible explanation for this, we demonstrated that PD-L1-specific antibody massively occupied PD-L1 in the periphery but failed to penetrate to PD-L1-expressing cells at the tumor site. In sharp contrast, locally delivered anti-PD-L1 nanobody improved PD-L1 blocking at the tumor site while avoiding systemic exposure. Our approach appears promising to overcome the limitations of immunotherapy based on PD-L1-specific antibody treatment.