Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Effects estimated by genome-wide association studies (GWASs) include effects of alleles in an individual on that individual (direct genetic effects), indirect genetic effects (for example, effects of alleles in parents on offspring through the environment) and bias from confounding. Within-family genetic variation is random, enabling unbiased estimation of direct genetic effects when parents are genotyped. However, parental genotypes are often missing. We introduce a method that imputes missing parental genotypes and estimates direct genetic effects. Our method, implemented in the software package snipar (single-nucleotide imputation of parents), gives more precise estimates of direct genetic effects than existing approaches. Using 39,614 individuals from the UK Biobank with at least one genotyped sibling/parent, we estimate the correlation between direct genetic effects and effects from standard GWASs for nine phenotypes, including educational attainment (r = 0.739, standard error (s.e.) = 0.086) and cognitive ability (r = 0.490, s.e. = 0.086). Our results demonstrate substantial confounding bias in standard GWASs for some phenotypes.

Original publication

DOI

10.1038/s41588-022-01085-0

Type

Journal article

Journal

Nature genetics

Publication Date

09/06/2022

Addresses

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK. alextisyoung@gmail.com.