Pneumococcal genetic variability in age-dependent bacterial carriage.
Kremer PHC., Ferwerda B., Bootsma HJ., Rots NY., Wijmenga-Monsuur AJ., Sanders EAM., Trzciński K., Wyllie AL., Turner P., van der Ende A., Brouwer MC., Bentley SD., van de Beek D., Lees J.
The characteristics of pneumococcal carriage vary between infants and adults, with onward implications for transmission rates, and disease control using vaccines. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen variation is currently less well-known. Indeed, identification of specific pneumococcal genetic factors associated with carriage in younger or older age groups may suggest alternative vaccine formulations would reduce overall disease. To search for such factors, we used whole genome sequencing to understand how pneumococcal variation is associated with age. We performed genome sequencing in a large carriage cohort, and conducted a meta-analysis with an existing carriage study. We compiled a dictionary of pathogen genetic variation including serotype, sequence cluster, sequence elements, SNPs, burden combined rare variants, and clusters of orthologous genes (COGs) for each cohort - all of which used in a genome-wide association with host age. Age-dependent colonization showed weak evidence for heritability in the first cohort (h2 = 0.10, 0.00 - 0.69 95% CI), and stronger evidence in the second cohort (h2 = 0.56, 0.23 - 0.87 95% CI). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 0.04 - 0.14 95% CI and h2GPSC = 0.06, 0.03 - 0.13 95% CI) and the second cohort (h2serotype = 0.11, 0.05 - 0.21 95% CI and h2GPSC = 0.20, 0.12 - 0.31 95% CI). In a meta-analysis of these cohorts, we found one candidate association (p = 1.2x10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find an effect of pathogen genome variation on pneumococcal carriage in children versus adult hosts, this was variable between populations and does not appear have a strong relationship with individual genes. This supports proposals for adaptive future vaccination strategies which are primarily targeted at dominant circulating serotypes, and tailored to the composition of the pathogen populations.