Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC-5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. In addition, we characterised the viral transcriptome in infected Calu-3 lung epithelial cells at 48 hours post infection. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing using an Oxford nanopore device. This platform yielded over 450,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine the relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We examined the frequency of polycistronic readthrough mRNAs were generated and assessed the length of the polyadenylated tails for each group of transcripts. We show a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not uniform. The polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host polyadenylation machinery and broadly declined in length for most transcripts as the infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails less than 20 nucleotides is less for N, SH and G transcripts in both cell lines compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates within and between the cell lines.

Original publication

DOI

10.1371/journal.pone.0276697

Type

Journal article

Journal

PloS one

Publication Date

01/2022

Volume

17

Addresses

School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.

Keywords

Humans, Respiratory Syncytial Virus, Human, Respiratory Syncytial Virus Infections, RNA, Messenger, RNA, Viral, Sequence Analysis, RNA