Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Limited sensitivity and specificity of current diagnostics lead to the erroneous prescription of antibiotics. Host-response-based diagnostics could address these challenges. However, using 4,200 samples across 69 blood transcriptome datasets from 20 countries from patients with bacterial or viral infections representing a broad spectrum of biological, clinical, and technical heterogeneity, we show current host-response-based gene signatures have lower accuracy to distinguish intracellular bacterial infections from viral infections than extracellular bacterial infections. Using these 69 datasets, we identify an 8-gene signature to distinguish intracellular or extracellular bacterial infections from viral infections with an area under the receiver operating characteristic curve (AUROC) > 0.91 (85.9% specificity and 90.2% sensitivity). In prospective cohorts from Nepal and Laos, the 8-gene classifier distinguished bacterial infections from viral infections with an AUROC of 0.94 (87.9% specificity and 91% sensitivity). The 8-gene signature meets the target product profile proposed by the World Health Organization and others for distinguishing bacterial and viral infections.

Original publication




Journal article


Cell reports. Medicine

Publication Date





Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA; Immunology Graduate Program, Department of Medicine, Stanford University, Stanford, CA, USA.


Humans, Bacterial Infections, Virus Diseases, Sensitivity and Specificity, Prospective Studies, Transcriptome