Frequency matters: comparison of drug resistance mutation detection by Sanger and next-generation sequencing in HIV-1
Balakrishna S., Loosli T., Zaheri M., Frischknecht P., Huber M., Kusejko K., Yerly S., Leuzinger K., Perreau M., Ramette A., Wymant C., Fraser C., Kellam P., Gall A., Hirsch HH., Stoeckle M., Rauch A., Cavassini M., Bernasconi E., Notter J., Calmy A., Günthard HF., Metzner KJ., Kouyos RD.
AbstractBackgroundNext-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds.MethodsTo compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds.ResultsWe included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen’s kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%–25% to 293/812 (36.1%) at 1%–2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%.ConclusionsWe found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.